IDEAS home Printed from https://ideas.repec.org/a/vrs/enviro/v5y2017i4p74-81n7.html
   My bibliography  Save this article

The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland

Author

Listed:
  • Solarski Maksymilian

    (Department of Physical Geography, Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland)

Abstract

The aim of this study was to determine the dynamics of the process of a course of ice creation phenomena in two small water bodies located in the Silesian Upland. The studies and observations of ice formation on the water bodies were conducted during the period 10th November 2011 to 23rd March 2012. The following parameters were determined each day: degree of ice coverage on each water body, thickness and ice structure and thickness of snow cover on each water body. From the studies it results that a course of the ice formation of both water bodies was almost identical. The same maximum ice thickness was recorded in both cases. It was 36 cm in that season, with slight differences in average thickness. The course of particular phases of ice formation in different water regions was also very similar. The number of days with the ice phenomena and the number of days from the beginning to the end of the ice phenomena were identical in both cases, being 96 and 131 days, respectively. The slight differences over several days were recorded in the case of: number of days with shore ice (lb), number of days with partial ice cover (lcz), number of days with an incomplete ice cover (lnp), number of breaks in the ice cover (B). Additionally, with daily measurements of ice cover thickness the relationships between the course of the average daily air temperature from the meteorological station of Faculty of Earth Sciences of University of Silesia and the daily changes in the ice thickness in the water regions in question were determined by using Spearman’s correlation coefficient. In both cases the relationships were strong and they were r= −0,84(p

Suggested Citation

  • Solarski Maksymilian, 2017. "The ice phenomena dynamics of small anthropogenic water bodies in the Silesian Upland, Poland," Environmental & Socio-economic Studies, Sciendo, vol. 5(4), pages 74-81, December.
  • Handle: RePEc:vrs:enviro:v:5:y:2017:i:4:p:74-81:n:7
    DOI: 10.1515/environ-2017-0022
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/environ-2017-0022
    Download Restriction: no

    File URL: https://libkey.io/10.1515/environ-2017-0022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara Benson & John Magnuson & Olaf Jensen & Virginia Card & Glenn Hodgkins & Johanna Korhonen & David Livingstone & Kenton Stewart & Gesa Weyhenmeyer & Nick Granin, 2012. "Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005)," Climatic Change, Springer, vol. 112(2), pages 299-323, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna-Maria Soja & Károly Kutics & Karl Maracek & Gábor Molnár & Gerhard Soja, 2014. "Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012 - influences of local weather and large scale oscillation patterns," Climatic Change, Springer, vol. 126(1), pages 119-133, September.
    2. Daniel F. Schmidt & Kevin M. Grise & Michael L. Pace, 2019. "High-frequency climate oscillations drive ice-off variability for Northern Hemisphere lakes and rivers," Climatic Change, Springer, vol. 152(3), pages 517-532, March.
    3. Sapna Sharma & John Magnuson & Gricelda Mendoza & Stephen Carpenter, 2013. "Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004," Climatic Change, Springer, vol. 118(3), pages 857-870, June.
    4. Sapna Sharma & John Magnuson, 2014. "Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004," Climatic Change, Springer, vol. 124(4), pages 835-847, June.
    5. Gesa A. Weyhenmeyer & Ulrike Obertegger & Hugo Rudebeck & Ellinor Jakobsson & Joachim Jansen & Galina Zdorovennova & Sheel Bansal & Benjamin D. Block & Cayelan C. Carey & Jonathan P. Doubek & Hilary D, 2022. "Towards critical white ice conditions in lakes under global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    7. Glenn Hodgkins, 2013. "The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England," Climatic Change, Springer, vol. 119(3), pages 705-718, August.
    8. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Kevin Blagrave & Sapna Sharma, 2023. "Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes," Climatic Change, Springer, vol. 176(9), pages 1-19, September.
    10. Solomon Gebre & Netra Timalsina & Knut Alfredsen, 2014. "Some Aspects of Ice-Hydropower Interaction in a Changing Climate," Energies, MDPI, vol. 7(3), pages 1-15, March.
    11. G. H. Niedrist & R. Psenner & R. Sommaruga, 2018. "Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake," Climatic Change, Springer, vol. 151(3), pages 473-490, December.
    12. Lin Li & Meiping Sun & Jing Mei, 2022. "Variation and Influencing Factors of Cloud Characteristics over Qinghai Lake from 2006 to 2019," Sustainability, MDPI, vol. 14(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:enviro:v:5:y:2017:i:4:p:74-81:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.