IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v55y2023i7p687-697.html
   My bibliography  Save this article

Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence

Author

Listed:
  • Nan Zhang
  • Sen Tian
  • Kaiquan Cai
  • Jun Zhang

Abstract

In this article, the condition-based maintenance optimization of a K-out-of-N deteriorating system considering failure dependence is discussed. The degradation of each component is modelled by a pure jump Lévy process. Whenever one component fails, it can either induce instantaneous failures or lead to the increment of degradation levels of other components. Thus, this model has the flexibility to describe the phenomena of instantaneous failures of multiple components, which is known as the common cause failure. It can also model the accumulative, gradual propagation effect of the component failure to the system. A periodic inspection policy is considered to reveal the real state of the system, upon which, possible maintenance actions can be carried out according to the observations. The inspection and maintenance problem is formulated as a Markov decision process and the value iteration algorithm is employed to solve the problem. The proposed policy is assessed by the total expected discounted cost in the long-run horizon. Under mild conditions, some structural properties of the optimal maintenance policies are obtained. A numerical example is given to illustrate the applicability of the proposed model. It can provide theoretical reference for the decision-maker when developing maintenance policies.

Suggested Citation

  • Nan Zhang & Sen Tian & Kaiquan Cai & Jun Zhang, 2023. "Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence," IISE Transactions, Taylor & Francis Journals, vol. 55(7), pages 687-697, July.
  • Handle: RePEc:taf:uiiexx:v:55:y:2023:i:7:p:687-697
    DOI: 10.1080/24725854.2022.2078523
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2022.2078523
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2022.2078523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Nan & Cai, Kaiquan & Deng, Yingjun & Zhang, Jun, 2024. "Joint optimization of condition-based maintenance and condition-based production of a single equipment considering random yield and maintenance delay," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:55:y:2023:i:7:p:687-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.