IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i10p1156-1172.html
   My bibliography  Save this article

Exact robust solutions for the combined facility location and network design problem in hazardous materials transportation

Author

Listed:
  • Xufei Liu
  • Changhyun Kwon

Abstract

We consider a leader-follower game in the form of a bi-level optimization problem that simultaneously optimizes facility locations and network design in hazardous materials transportation. In the upper level, the leader intends to reduce the facility setup cost and the hazmat exposure risk, by choosing facility locations and road segments to close for hazmat transportation. When making such decisions, the leader anticipates the response of the followers who want to minimize the transportation costs. Considering uncertainty in the hazmat exposure and the hazmat transport demand, we consider a robust optimization approach with multiplicative uncertain parameters and polyhedral uncertainty sets. The resulting problem has a min-max problem in the upper level and a shortest-path problem in the lower level. We devise an exact algorithm that combines a cutting plane algorithm with Benders decomposition

Suggested Citation

  • Xufei Liu & Changhyun Kwon, 2020. "Exact robust solutions for the combined facility location and network design problem in hazardous materials transportation," IISE Transactions, Taylor & Francis Journals, vol. 52(10), pages 1156-1172, October.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:10:p:1156-1172
    DOI: 10.1080/24725854.2019.1697017
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1697017
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1697017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    2. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    3. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:10:p:1156-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.