IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i6p589-604.html
   My bibliography  Save this article

A robust chance constraint programming approach for evacuation planning under uncertain demand distribution

Author

Listed:
  • Gino J. Lim
  • Mukesh Rungta
  • Ayda Davishan

Abstract

This study focuses on an evacuation planning problem where the number of actual evacuees (demand) is unknown at the planning phase. In the context of mass evacuation, we assume that only partial information about the demand distribution (i.e., moment, support, or symmetry) is known as opposed to the exact distribution in a stochastic environment. To address this issue, robust approximations of chance-constrained problems are explored to model traffic demand uncertainty in evacuation networks. Specifically, a distributionally robust chance-constrained model is proposed to ensure a reliable evacuation plan (start time, path selection, and flow assignment) in which the vehicle demand constraints are satisfied for any probability distribution consistent with the known properties of the underlying unknown evacuation demand. Using a path-based model, the minimum clearance time is found for the evacuation problem under partial information of the random demand. Numerical experiments show that the proposed approach works well in terms of solution feasibility and robustness as compared to the solution provided by a chance constrained programming model under the assumption that the demand distribution follows a known probability distribution.

Suggested Citation

  • Gino J. Lim & Mukesh Rungta & Ayda Davishan, 2019. "A robust chance constraint programming approach for evacuation planning under uncertain demand distribution," IISE Transactions, Taylor & Francis Journals, vol. 51(6), pages 589-604, June.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:6:p:589-604
    DOI: 10.1080/24725854.2018.1533675
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2018.1533675
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2018.1533675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    2. Darvishan, Ayda & Lim, Gino J., 2021. "Dynamic network flow optimization for real-time evacuation reroute planning under multiple road disruptions," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:6:p:589-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.