IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i2p109-123.html
   My bibliography  Save this article

Layer-wise spatial modeling of porosity in additive manufacturing

Author

Listed:
  • Jia (Peter) Liu
  • Chenang Liu
  • Yun Bai
  • Prahalada Rao
  • Christopher B. Williams
  • Zhenyu (James) Kong

Abstract

The objective of this work is to model and quantify the layer-wise spatial evolution of porosity in parts made using Additive Manufacturing (AM) processes. This is an important research area because porosity has a direct impact on the functional integrity of AM parts such as their fatigue life and strength. To realize this objective, an Augmented Layer-wise Spatial log Gaussian Cox process (ALS-LGCP) model is proposed. The ALS-LGCP approach quantifies the spatial distribution of pores within each layer of the AM part and tracks their sequential evolution across layers. Capturing the layer-wise spatial behavior of porosity leads to a deeper understanding of where (at what location), when (at which layer), and to what severity (size and number) pores are formed. This work therefore provides a mathematical framework for identifying specific pore-prone areas in an AM part, and tracking the evolution of porosity in AM parts in a layer-wise manner. This knowledge is essential for initiating remedial corrective actions to avoid porosity in future parts, e.g., by changing the process parameters or part design. The ALS-LGCP approach proposed herein is a significant improvement over the current scalar metric used to quantify porosity, namely, the percentage porosity relative to the bulk part volume. In this article, the ALS-LGCP approach is tested for metal parts made using a binder jetting AM process to model the layer-wise spatial behavior of porosity. Based on offline, non-destructive X-Ray computed tomography (XCT) scan data of the part the approach identifies those areas with high risk of porosity with statistical fidelity approaching 85% (F-score). While the proposed work uses offline XCT data, it takes the critical first-step from a data analytics perspective for taking advantage of the recently reported breakthroughs in online, in-situ X-Ray-based monitoring of AM processes. Further, the ALS-LGCP approach is readily extensible for porosity analysis in other AM processes; our future forays will focus on improving the computational tractability of the approach for online monitoring.

Suggested Citation

  • Jia (Peter) Liu & Chenang Liu & Yun Bai & Prahalada Rao & Christopher B. Williams & Zhenyu (James) Kong, 2019. "Layer-wise spatial modeling of porosity in additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 51(2), pages 109-123, February.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:2:p:109-123
    DOI: 10.1080/24725854.2018.1478169
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2018.1478169
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2018.1478169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    2. Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:2:p:109-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.