IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v44y2012i1p55-67.html
   My bibliography  Save this article

Economic design of a load-sharing consecutive -out-of-:F system

Author

Listed:
  • Won Yun
  • Gui Kim
  • Hisashi Yamamoto

Abstract

This article considers a linear and circular consecutive-k-out-of-n:F system composed of n identical components with exponential failure time distributions and subjected to a total load that is equally shared by all the working components in the system. The event of a component failure results in a higher load, therefore inducing a higher failure rate, in each of the surviving components. A power rule relationship between the amount of the load shared by surviving components and the failure rate of the surviving components is assumed. The system reliability of the proposed consecutive-k-out-of-n:F system with load-sharing dependency is obtained. Three optimization problems (in which the expected cost per unit time is used as an optimization criterion) are considered to determine the system configuration n and a preventive maintenance interval. The effect of dependence parameters, the system configuration parameter k, and various cost parameters on the optimal n and maintenance interval are investigated in numerical examples. A comparison between the three problems is also performed. Accepted in 2005 for a special issue on Reliability co-edited by Hoang Pham, Rutgers University: Dong Ho Park, Hallym University, Korea; and Richard Cassady, University of Arkansas.

Suggested Citation

  • Won Yun & Gui Kim & Hisashi Yamamoto, 2012. "Economic design of a load-sharing consecutive -out-of-:F system," IISE Transactions, Taylor & Francis Journals, vol. 44(1), pages 55-67.
  • Handle: RePEc:taf:uiiexx:v:44:y:2012:i:1:p:55-67
    DOI: 10.1080/0740817X.2011.590442
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2011.590442
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2011.590442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endharta, Alfonsus Julanto & Yun, Won Young & Ko, Young Myoung, 2018. "Reliability evaluation of circular k-out-of-n: G balanced systems through minimal path sets," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 226-236.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:44:y:2012:i:1:p:55-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.