IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v13y2009i3p339-355.html
   My bibliography  Save this article

Life Insurance Mathematics with Random Life Tables

Author

Listed:
  • Michel Denuit
  • Esther Frostig

Abstract

When the insurer sells life annuities, projected life tables incorporating a forecast of future longevity must be used for pricing and reserving. To fix the ideas, the framework of Lee and Carter is adopted in this paper. The Lee-Carter model for mortality forecasting assumes that the death rate at age x in calendar year t is of the form exp(αx + (βxKt), where the time-varying parameter Kt reflects the general level of mortality and follows an ARIMA model. The future lifetimes are all influenced by the same time index Kt in this framework. Because the future path of this index is unknown and modeled as a stochastic process, the policyholders' lifetimes become dependent on each other. Consequently the risk does not disappear as the size of the portfolio increases: there always remains some systematic risk that cannot be diversified, whatever the number of policies. This paper aims to investigate some aspects of actuarial mathematics in the context of random life tables. First, the type of dependence existing between the insured life lengths is carefully examined. The way positive dependence influences the need for economic capital is assessed compared to mutual independence, as well as the effect of the timing of deaths through Bayesian credibility mechanisms. Then the distribution of the present value of payments under a closed group of life annuity policies is studied. Failing to account for the positive dependence between insured lifetimes is a dangerous strategy, even if the randomness in the future survival probabilities is incorporated in the actuarial computations. Numerical illustrations are performed on the basis of Belgian mortality statistics. The impact on the distribution of the present value of the additional variability that results from the Lee-Carter model is compared with the traditional method of mortality projection. Also, the impact of ignoring the dependence hat arises from the model is quantified.

Suggested Citation

  • Michel Denuit & Esther Frostig, 2009. "Life Insurance Mathematics with Random Life Tables," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 339-355.
  • Handle: RePEc:taf:uaajxx:v:13:y:2009:i:3:p:339-355
    DOI: 10.1080/10920277.2009.10597560
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2009.10597560
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2009.10597560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njenga, Carolyn Ndigwako & Sherris, Michael, 2020. "Modeling mortality with a Bayesian vector autoregression," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 40-57.
    2. Carolyn Njenga & Michael Sherris, 2011. "Modeling Mortality with a Bayesian Vector Autoregression," Working Papers 201105, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:13:y:2009:i:3:p:339-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.