IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i14p2659-2672.html
   My bibliography  Save this article

An efficient and robust design optimisation of multi-state flow network for multiple commodities using generalised reliability evaluation algorithm and edge reduction method

Author

Listed:
  • Yu-Cheng Chou
  • Po Ting Lin

Abstract

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The reliability of delivering commodities from a source node to a sink node in the network is maximised to find the optimal routing. However, the design problem is not simple due to randomly distributed attributes in each path, multiple commodities with variable path capacities and the allowable time constraints for delivery. This paper presents the design optimisation of the multi-state flow network (MSFN) for multiple commodities. We propose an efficient and robust approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and to find the optimal routing subject to the allowable time constraints. The delivery rates of the path segments are evaluated and the minimal-speed arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. The reliability of the optimal routing is at least higher than worst-case measure. Three benchmark examples are utilised to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Suggested Citation

  • Yu-Cheng Chou & Po Ting Lin, 2015. "An efficient and robust design optimisation of multi-state flow network for multiple commodities using generalised reliability evaluation algorithm and edge reduction method," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2659-2672, October.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2659-2672
    DOI: 10.1080/00207721.2013.879228
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.879228
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.879228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Pascoal & M. Captivo & João Clímaco, 2006. "A comprehensive survey on the quickest path problem," Annals of Operations Research, Springer, vol. 147(1), pages 5-21, October.
    2. W-C Yeh, 2005. "A novel method for the network reliability in terms of capacitated-minimum-paths without knowing minimum-paths in advance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1235-1240, October.
    3. Yeh, Wei-Chang, 2008. "A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 125-136.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    2. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    3. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    4. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    5. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    6. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    7. Jane, Chin-Chia & Laih, Yih-Wenn, 2010. "A dynamic bounding algorithm for approximating multi-state two-terminal reliability," European Journal of Operational Research, Elsevier, vol. 205(3), pages 625-637, September.
    8. Urmila Pyakurel & Tanka Nath Dhamala & Stephan Dempe, 2017. "Efficient continuous contraflow algorithms for evacuation planning problems," Annals of Operations Research, Springer, vol. 254(1), pages 335-364, July.
    9. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Lin, Yi-Kuei & Chang, Ping-Chen, 2012. "Evaluate the system reliability for a manufacturing network with reworking actions," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 127-137.
    11. Herminia Calvete & Lourdes del-Pozo & José Iranzo, 2012. "Algorithms for the quickest path problem and the reliable quickest path problem," Computational Management Science, Springer, vol. 9(2), pages 255-272, May.
    12. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    13. Yeh, Wei-Chang, 2023. "QB-II for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Calvete, Herminia I. & del-Pozo, Lourdes & Iranzo, José A., 2018. "Dealing with residual energy when transmitting data in energy-constrained capacitated networks," European Journal of Operational Research, Elsevier, vol. 269(2), pages 602-620.
    15. Pyakurel, Urmila & Khanal, Durga Prasad & Dhamala, Tanka Nath, 2023. "Abstract network flow with intermediate storage for evacuation planning," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1178-1193.
    16. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    17. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Yi-Kuei Lin & Cheng-Fu Huang, 2016. "Reliability evaluation according to a routing scheme for multi-state computer networks under assured accuracy rate," Annals of Operations Research, Springer, vol. 244(1), pages 221-240, September.
    19. Urmila Pyakurel & Hari Nandan Nath & Tanka Nath Dhamala, 2019. "Partial contraflow with path reversals for evacuation planning," Annals of Operations Research, Springer, vol. 283(1), pages 591-612, December.
    20. Lin, Yi-Kuei & Fiondella, Lance & Chang, Ping-Chen, 2013. "Quantifying the impact of correlated failures on system reliability by a simulation approach," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 32-40.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2659-2672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.