IDEAS home Printed from https://ideas.repec.org/a/taf/tstfxx/v7y2023i4p336-349.html
   My bibliography  Save this article

Bayesian-inspired minimum contamination designs under a double-pair conditional effect model

Author

Listed:
  • Ming-Chung Chang

Abstract

In two-level fractional factorial designs, conditional main effects can provide insights by which to analyze factorial effects and facilitate the de-aliasing of fully aliased two-factor interactions. Conditional main effects are of particular interest in situations where some factors are nested within others. Most of the relevant literature has focused on the development of data analysis tools that use conditional main effects, while the issue of optimal factorial design for a given linear model involving conditional main effects has been largely overlooked. Mukerjee, Wu and Chang [Statist. Sinica 27 (2017) 997–1016] established a framework by which to optimize designs under a conditional effect model. Although theoretically sound, their results were limited to a single pair of conditional and conditioning factors. In this paper, we extend the applicability of their framework to double pairs of conditional and conditioning factors by providing the corresponding parameterization and effect hierarchy. We propose a minimum contamination-based criterion by which to evaluate designs and develop a complementary set theory to facilitate the search of minimum contamination designs. The catalogues of 16- and 32-run minimum contamination designs are provided. For five to twelve factors, we show that all 16-run minimum contamination designs under the conditional effect model are also minimum aberration according to Fries and Hunter [Technometrics 22 (1980) 601–608].

Suggested Citation

  • Ming-Chung Chang, 2023. "Bayesian-inspired minimum contamination designs under a double-pair conditional effect model," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 7(4), pages 336-349, October.
  • Handle: RePEc:taf:tstfxx:v:7:y:2023:i:4:p:336-349
    DOI: 10.1080/24754269.2023.2250237
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24754269.2023.2250237
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24754269.2023.2250237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tstfxx:v:7:y:2023:i:4:p:336-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tstf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.