IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v21y2021i8p1235-1247.html
   My bibliography  Save this article

From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect

Author

Listed:
  • Aditi Dandapani
  • Paul Jusselin
  • Mathieu Rosenbaum

Abstract

Building log-normal-like rough volatility models with proper Zumbach effect using a microstructural approach

Suggested Citation

  • Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2021. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1235-1247, August.
  • Handle: RePEc:taf:quantf:v:21:y:2021:i:8:p:1235-1247
    DOI: 10.1080/14697688.2020.1841906
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2020.1841906
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2020.1841906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    2. Enrico Dall'Acqua & Riccardo Longoni & Andrea Pallavicini, 2022. "Rough-Heston Local-Volatility Model," Papers 2206.09220, arXiv.org.
    3. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    4. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    5. Bruno Durin & Mathieu Rosenbaum & Gr'egoire Szymanski, 2023. "The two square root laws of market impact and the role of sophisticated market participants," Papers 2311.18283, arXiv.org.
    6. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    7. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:21:y:2021:i:8:p:1235-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.