IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i10p1535-1546.html
   My bibliography  Save this article

Multiperiod mean-variance efficient portfolios with endogenous liabilities

Author

Listed:
  • Markus Leippold
  • Fabio Trojani
  • Paolo Vanini

Abstract

We study the optimal policies and mean-variance frontiers (MVF) of a multiperiod mean-variance optimization of assets and liabilities (AL). This makes the analysis more challenging than for a setting based on purely exogenous liabilities, in which the optimization is only performed on the assets while keeping liabilities fixed. We show that, under general conditions for the joint AL dynamics, the optimal policies and the MVF can be decomposed into an orthogonal set of basis returns using exterior algebra. This formalism, novel to financial applications, allows us to study analytically the structure of optimal policies and MVF representations under endogenous liabilities in a multidimensional and multiperiod setting. Using a numerical example, we illustrate our methodology by analysing the impact of the rebalancing frequency on the MVF and by highlighting the main differences between exogenous and endogenous liabilities.

Suggested Citation

  • Markus Leippold & Fabio Trojani & Paolo Vanini, 2011. "Multiperiod mean-variance efficient portfolios with endogenous liabilities," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1535-1546.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:10:p:1535-1546
    DOI: 10.1080/14697680902950813
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680902950813
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680902950813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    2. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
    3. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    4. Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
    5. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    6. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    7. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    8. Haixiang Yao & Xun Li & Zhifeng Hao & Yong Li, 2016. "Dynamic asset–liability management in a Markov market with stochastic cash flows," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1575-1597, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:10:p:1535-1546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.