IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v23y2017i5p476-503.html
   My bibliography  Save this article

Two-phase reservoir: development of a transient thermo-hydraulic model based on bond graph approach with experimental validation

Author

Listed:
  • M. Kebdani
  • G. Dauphin-Tanguy
  • A. Dazin
  • R. Albach
  • P. Dupont

Abstract

The main purpose of the project FUI THERMOFLUID is to study the feasibility of a new electronic cooling system embedded on flying objects (missile, satellite, and airplane). The technology chosen consists of a pumped two-phase flow cooling loop (PTPFL). It is an innovative technology with a transport capacity of the thermal power up to 10 MW.m, exceeding in this way the performance of all other technologies. A PTPFL is a cooling loop based on the exploitation of the latent heat properties of the fluid trapped inside the loop, and moved by a pump. The components constituting a PTPFL are: a two-phase reservoir (TP-R), a mini-channels evaporator, a brazed plate condenser, a pump, and pipes. The global research work is devoted to propose a dynamic model and experimental validation of the PTPFL. The present article is exclusively dedicated to the TP-R. Indeed, this element plays a key role in the functioning of PTPFL. Historically, the TP-R did not equip the first cooling loop. However, due to its advantages, its introduction was essential. The developed dynamic model will be used in another work to predict the thermal hydraulic efficiency of the PTPFL from its mechanical and fluidic parameters, to conduct the study of transitional regimes and instability problems, and provides an original tool dedicated to design the TP-R in function of the thermal power levels to be evacuated and the selected refrigerant. The bond graph methodology is adopted for modelling works because of its energetic approach and multi-physics character of the studied system. The new model proposed in this article has many originalities: First, it is based on bond graph approach. Nowadays, the open literature shows that no bond graph model has been developed for such thermo-fluid system. Second, the dynamic model of TP-R pays great attention to phenomena that have never been taken into account in works cited in the present article, such as evaporation and condensation. Third, different conducto-convective heat exchanges are modelled without any experimental recalibration of the thermal exchange coefficients, unlike models proposed in the literature. In fact, all coefficients are systematically calculated using adequate correlations.

Suggested Citation

  • M. Kebdani & G. Dauphin-Tanguy & A. Dazin & R. Albach & P. Dupont, 2017. "Two-phase reservoir: development of a transient thermo-hydraulic model based on bond graph approach with experimental validation," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 23(5), pages 476-503, September.
  • Handle: RePEc:taf:nmcmxx:v:23:y:2017:i:5:p:476-503
    DOI: 10.1080/13873954.2016.1259635
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2016.1259635
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2016.1259635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahcen Amri & Smail Zouggar & Jean-Frédéric Charpentier & Mohamed Kebdani & Abdelhamid Senhaji & Abdelilah Attar & Farid Bakir, 2023. "Design and Optimization of Synchronous Motor Using PM Halbach Arrays for Rim-Driven Counter-Rotating Pump," Energies, MDPI, vol. 16(7), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:23:y:2017:i:5:p:476-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.