IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i543p1890-1899.html
   My bibliography  Save this article

Generalized Good-Turing Improves Missing Mass Estimation

Author

Listed:
  • Amichai Painsky

Abstract

Consider a finite sample from an unknown distribution over a countable alphabet. The missing mass refers to the probability of symbols that do not appear in the sample. Estimating the missing mass is a basic problem in statistics and related fields, which dates back to the early work of Laplace, and the more recent seminal contribution of Good and Turing. In this article, we introduce a generalized Good-Turing (GT) framework for missing mass estimation. We derive an upper-bound for the risk (in terms of mean squared error) and minimize it over the parameters of our framework. Our analysis distinguishes between two setups, depending on the (unknown) alphabet size. When the alphabet size is bounded from above, our risk-bound demonstrates a significant improvement compared to currently known results (which are typically oblivious to the alphabet size). Based on this bound, we introduce a numerically obtained estimator that improves upon GT. When the alphabet size holds no restrictions, we apply our suggested risk-bound and introduce a closed-form estimator that again improves GT performance guarantees. Our suggested framework is easy to apply and does not require additional modeling assumptions. This makes it a favorable choice for practical applications. Supplementary materials for this article are available online.

Suggested Citation

  • Amichai Painsky, 2023. "Generalized Good-Turing Improves Missing Mass Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1890-1899, July.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1890-1899
    DOI: 10.1080/01621459.2021.2020658
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.2020658
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.2020658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1890-1899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.