IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p833-844.html
   My bibliography  Save this article

Auto-G-Computation of Causal Effects on a Network

Author

Listed:
  • Eric J. Tchetgen Tchetgen
  • Isabel R. Fulcher
  • Ilya Shpitser

Abstract

Methods for inferring average causal effects have traditionally relied on two key assumptions: (i) the intervention received by one unit cannot causally influence the outcome of another; and (ii) units can be organized into nonoverlapping groups such that outcomes of units in separate groups are independent. In this article, we develop new statistical methods for causal inference based on a single realization of a network of connected units for which neither assumption (i) nor (ii) holds. The proposed approach allows both for arbitrary forms of interference, whereby the outcome of a unit may depend on interventions received by other units with whom a network path through connected units exists; and long range dependence, whereby outcomes for any two units likewise connected by a path in the network may be dependent. Under network versions of consistency and no unobserved confounding, inference is made tractable by an assumption that the networks outcome, treatment and covariate vectors are a single realization of a certain chain graph model. This assumption allows inferences about various network causal effects via the auto-g-computation algorithm, a network generalization of Robins’ well-known g-computation algorithm previously described for causal inference under assumptions (i) and (ii). Supplementary materials for this article are available online.

Suggested Citation

  • Eric J. Tchetgen Tchetgen & Isabel R. Fulcher & Ilya Shpitser, 2021. "Auto-G-Computation of Causal Effects on a Network," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 833-844, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:833-844
    DOI: 10.1080/01621459.2020.1811098
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1811098
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1811098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:833-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.