IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p983-991.html
   My bibliography  Save this article

Optimal Probability Weights for Inference With Constrained Precision

Author

Listed:
  • Michele Santacatterina
  • Matteo Bottai

Abstract

Probability weights are used in many areas of research including complex survey designs, missing data analysis, and adjustment for confounding factors. They are useful analytic tools but can lead to statistical inefficiencies when they contain outlying values. This issue is frequently tackled by replacing large weights with smaller ones or by normalizing them through smoothing functions. While these approaches are practical, they are also prone to yield biased inferences. This article introduces a method for obtaining optimal weights, defined as those with smallest Euclidean distance from target weights among all sets of weights that satisfy a constraint on the variance of the resulting weighted estimator. The optimal weights yield minimum-bias estimators among all estimators with specified precision. The method is based on solving a constrained nonlinear optimization problem whose Lagrange multipliers and objective function can help assess the trade-off between bias and precision of the resulting weighted estimator. The finite-sample performance of the optimally weighted estimator is assessed in a simulation study, and its applicability is illustrated through an analysis of heterogeneity over age of the effect of the timing of treatment-initiation on long-term treatment efficacy in patient infected by human immunodeficiency virus in Sweden.

Suggested Citation

  • Michele Santacatterina & Matteo Bottai, 2018. "Optimal Probability Weights for Inference With Constrained Precision," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 983-991, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:983-991
    DOI: 10.1080/01621459.2017.1375932
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1375932
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1375932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kallus Nathan & Santacatterina Michele, 2021. "Optimal balancing of time-dependent confounders for marginal structural models," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 345-369, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:983-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.