IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p621-633.html
   My bibliography  Save this article

Structured Matrix Completion with Applications to Genomic Data Integration

Author

Listed:
  • Tianxi Cai
  • T. Tony Cai
  • Anru Zhang

Abstract

Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics, and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival. Supplementary materials for this article are available online.

Suggested Citation

  • Tianxi Cai & T. Tony Cai & Anru Zhang, 2016. "Structured Matrix Completion with Applications to Genomic Data Integration," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 621-633, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:621-633
    DOI: 10.1080/01621459.2015.1021005
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1021005
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1021005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    2. Xiao, Zhen & Zhang, Qi, 2022. "Dimension reduction for block-missing data based on sparse sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Dong Xia & Ming Yuan, 2021. "Statistical inferences of linear forms for noisy matrix completion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 58-77, February.
    4. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    5. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:621-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.