IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i508p1546-1564.html
   My bibliography  Save this article

Nonparametric Estimation of Probability Density Functions for Irregularly Observed Spatial Data

Author

Listed:
  • Zudi Lu
  • Dag Tjøstheim

Abstract

Nonparametric estimation of probability density functions, both marginal and joint densities, is a very useful tool in statistics. The kernel method is popular and applicable to dependent data, including time series and spatial data. But at least for the joint density, one has had to assume that data are observed at regular time intervals or on a regular grid in space. Though this is not very restrictive in the time series case, it often is in the spatial case. In fact, to a large degree it has precluded applications of nonparametric methods to spatial data because such data often are irregularly positioned over space. In this article, we propose nonparametric kernel estimators for both the marginal and in particular the joint probability density functions for nongridded spatial data. Large sample distributions of the proposed estimators are established under mild conditions, and a new framework of expanding-domain infill asymptotics is suggested to overcome the shortcomings of spatial asymptotics in the existing literature. A practical, reasonable selection of the bandwidths on the basis of cross-validation is also proposed. We demonstrate by both simulations and real data examples of moderate sample size that the proposed methodology is effective and useful in uncovering nonlinear spatial dependence for general, including non-Gaussian, distributions. Supplementary materials for this article are available online.

Suggested Citation

  • Zudi Lu & Dag Tjøstheim, 2014. "Nonparametric Estimation of Probability Density Functions for Irregularly Observed Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1546-1564, December.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1546-1564
    DOI: 10.1080/01621459.2014.947376
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.947376
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.947376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.
    2. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    3. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    4. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    5. Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    6. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    7. Liu, Jialuo & Chu, Tingjin & Zhu, Jun & Wang, Haonan, 2021. "Semiparametric method and theory for continuously indexed spatio-temporal processes," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    8. Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
    9. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1546-1564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.