IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i504p1205-1215.html
   My bibliography  Save this article

Frailty Models for Familial Risk With Application to Breast Cancer

Author

Listed:
  • Malka Gorfine*
  • Li Hsu*
  • Giovanni Parmigiani

Abstract

In evaluating familial risk for disease we have two main statistical tasks: assessing the probability of carrying an inherited genetic mutation conferring higher risk, and predicting the absolute risk of developing diseases over time for those individuals whose mutation status is known. Despite substantial progress, much remains unknown about the role of genetic and environmental risk factors, about the sources of variation in risk among families that carry high-risk mutations, and about the sources of familial aggregation beyond major Mendelian effects. These sources of heterogeneity contribute substantial variation in risk across families. In this article we present simple and efficient methods for accounting for this variation in familial risk assessment. Our methods are based on frailty models. We implemented them in the context of generalizing Mendelian models of cancer risk, and compared our approaches to others that do not consider heterogeneity across families. Our extensive simulation study demonstrates that when predicting the risk of developing a disease over time conditional on carrier status, accounting for heterogeneity results in a substantial improvement in the area under the curve of the receiver operating characteristic. On the other hand, the improvement for carriership probability estimation is more limited. We illustrate the utility of the proposed approach through the analysis of BRCA1 and BRCA2 mutation carriers in the Washington Ashkenazi Kin-Cohort Study of Breast Cancer. Supplementary materials for this article are available online.

Suggested Citation

  • Malka Gorfine* & Li Hsu* & Giovanni Parmigiani, 2013. "Frailty Models for Familial Risk With Application to Breast Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1205-1215, December.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1205-1215
    DOI: 10.1080/01621459.2013.818001
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.818001
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.818001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Zhong & Richard J. Cook, 2018. "Second-Order Estimating Equations for Clustered Current Status Data from Family Studies Using Response-Dependent Sampling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 160-183, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1205-1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.