IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i501p187-201.html
   My bibliography  Save this article

Classification via Bayesian Nonparametric Learning of Affine Subspaces

Author

Listed:
  • Garritt Page
  • Abhishek Bhattacharya
  • David Dunson

Abstract

It has become common for datasets to contain large numbers of variables in studies conducted in areas such as genetics, machine vision, image analysis, and many others. When analyzing such data, parametric models are often too inflexible while nonparametric procedures tend to be nonrobust because of insufficient data on these high-dimensional spaces. This is particularly true when interest lies in building efficient classifiers in the presence of many predictor variables. When dealing with these types of data, it is often the case that most of the variability tends to lie along a few directions, or more generally along a much smaller dimensional submanifold of the data space. In this article, we propose a class of models that flexibly learn about this submanifold while simultaneously performing dimension reduction in classification. This methodology allows the cell probabilities to vary nonparametrically based on a few coordinates expressed as linear combinations of the predictors. Also, as opposed to many black-box methods for dimensionality reduction, the proposed model is appealing in having clearly interpretable and identifiable parameters that provide insight into which predictors are important in determining accurate classification boundaries. Gibbs sampling methods are developed for posterior computation, and the methods are illustrated using simulated and real data applications.

Suggested Citation

  • Garritt Page & Abhishek Bhattacharya & David Dunson, 2013. "Classification via Bayesian Nonparametric Learning of Affine Subspaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 187-201, March.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:187-201
    DOI: 10.1080/01621459.2013.763566
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.763566
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.763566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:187-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.