Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach

Contents:

Author Info

  • Moreno Bevilacqua
  • Carlo Gaetan
  • Jorge Mateu
  • Emilio Porcu
Registered author(s):

    Abstract

    In this article, we propose two methods for estimating space and space-time covariance functions from a Gaussian random field, based on the composite likelihood idea. The first method relies on the maximization of a weighted version of the composite likelihood function, while the second one is based on the solution of a weighted composite score equation. This last scheme is quite general and could be applied to any kind of composite likelihood. An information criterion for model selection based on the first estimation method is also introduced. The methods are useful for practitioners looking for a good balance between computational complexity and statistical efficiency. The effectiveness of the methods is illustrated through examples, simulation experiments, and by analyzing a dataset on ozone measurements.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1080/01621459.2011.646928
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 268-280

    as in new window
    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:268-280

    Contact details of provider:
    Web page: http://www.tandfonline.com/UASA20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/UASA20

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer, vol. 97(2), pages 133-150, April.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:268-280. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.