IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i11p2461-2477.html
   My bibliography  Save this article

Semiparametric models of longitudinal and time-to-event data with applications to HIV viral dynamics and CD4 counts

Author

Listed:
  • Xiaobing Zhao
  • Xian Zhou

Abstract

We propose a semiparametric approach based on proportional hazards and copula method to jointly model longitudinal outcomes and the time-to-event. The dependence between the longitudinal outcomes on the covariates is modeled by a copula-based times series, which allows non-Gaussian random effects and overcomes the limitation of the parametric assumptions in existing linear and nonlinear random effects models. A modified partial likelihood method using estimated covariates at failure times is employed to draw statistical inference. The proposed model and method are applied to analyze a set of progression to AIDS data in a study of the association between the human immunodeficiency virus viral dynamics and the time trend in the CD4/CD8 ratio with measurement errors. Simulations are also reported to evaluate the proposed model and method.

Suggested Citation

  • Xiaobing Zhao & Xian Zhou, 2015. "Semiparametric models of longitudinal and time-to-event data with applications to HIV viral dynamics and CD4 counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2461-2477, November.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:11:p:2461-2477
    DOI: 10.1080/02664763.2015.1043859
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1043859
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1043859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    2. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    3. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    4. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    5. Els Goetghebeur & Louise Ryan, 2000. "Semiparametric Regression Analysis of Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(4), pages 1139-1144, December.
    6. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    7. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    2. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    3. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    4. Emura, Takeshi & Lin, Chien-Wei & Wang, Weijing, 2010. "A goodness-of-fit test for Archimedean copula models in the presence of right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3033-3043, December.
    5. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2016. "Stat Trek," Dependence Modeling, De Gruyter, vol. 4(1), pages 109-122, May.
    6. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    7. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    8. Jeevanantham Rajeswaran & Eugene H Blackstone & John Barnard, 2018. "Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 651-685, December.
    9. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    10. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    11. Bücher, Axel & Dette, Holger, 2010. "Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 749-763, March.
    12. Scolas, Sylvie & El Ghouch, Anouar & Legrand, Catherine, 2016. "The SNP representation in mixture cure models with interval-censoring: estimation and goodness-of-fit testing," LIDAM Discussion Papers ISBA 2016049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Genest, Christian & Masiello, Esterina & Tribouley, Karine, 2009. "Estimating copula densities through wavelets," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 170-181, April.
    14. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    15. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    16. Paul S. Albert & Joanna H. Shih, 2010. "On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure," Biometrics, The International Biometric Society, vol. 66(3), pages 983-987, September.
    17. Travkin, Alexandr, 2013. "Pair copula constructions in portfolio optimization ploblem," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 32(4), pages 110-133.
    18. Fang, Y. & Madsen, L., 2013. "Modified Gaussian pseudo-copula: Applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 292-301.
    19. Kallenberg, Wilbert C.M., 2009. "Estimating copula densities, using model selection techniques," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 209-223, October.
    20. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:11:p:2461-2477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.