Advanced Search
MyIDEAS: Login to save this article or follow this journal

Trends in smoking cessation: a Markov model approach

Contents:

Author Info

  • Charles G. Minard
  • Wenyaw Chan
  • David W. Wetter
  • Carol J. Etzel
Registered author(s):

    Abstract

    Intervention trials such as studies on smoking cessation may observe multiple, discrete outcomes over time. When the outcome is binary, participant observations may alternate between two states over the course of the study. The generalized estimating equation (GEE) approach is commonly used to analyze binary, longitudinal data in the context of independent variables. However, the sequence of observations may be assumed to follow a Markov chain with stationary transition probabilities when observations are made at fixed time points. Participants favoring the transition to one particular state over the other would be evidence of a trend in the observations. Using a log-transformed trend parameter, the determinants of a trend in a binary, longitudinal study may be evaluated by maximizing the likelihood function. A new methodology is presented here to test for the presence and determinants of a trend in binary, longitudinal observations. Empirical studies are evaluated and comparisons are made with the GEE approach. Practical application of the proposed method is made to the data available from an intervention study on smoking cessation.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1080/02664763.2011.578619
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 39 (2012)
    Issue (Month): 1 (March)
    Pages: 113-127

    as in new window
    Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:113-127

    Contact details of provider:
    Web page: http://www.tandfonline.com/CJAS20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/CJAS20

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:113-127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.