IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i10p1661-1679.html
   My bibliography  Save this article

Random effects regression models for count data with excess zeros in caries research

Author

Listed:
  • D. Todem
  • Y. Zhang
  • A. Ismail
  • W. Sohn

Abstract

We extend the family of Poisson and negative binomial models to derive the joint distribution of clustered count outcomes with extra zeros. Two random effects models are formulated. The first model assumes a shared random effects term between the conditional probability of perfect zeros and the conditional mean of the imperfect state. The second formulation relaxes the shared random effects assumption by relating the conditional probability of perfect zeros and the conditional mean of the imperfect state to two different but correlated random effects variables. Under the conditional independence and the missing data at random assumption, a direct optimization of the marginal likelihood and an EM algorithm are proposed to fit the proposed models. Our proposed models are fitted to dental caries counts of children under the age of six in the city of Detroit.

Suggested Citation

  • D. Todem & Y. Zhang & A. Ismail & W. Sohn, 2010. "Random effects regression models for count data with excess zeros in caries research," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(10), pages 1661-1679.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:10:p:1661-1679
    DOI: 10.1080/02664760903127605
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760903127605
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903127605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas R. Ten Have & Alfredo Morabia, 1999. "Mixed Effects Models with Bivariate and Univariate Association Parameters for Longitudinal Bivariate Binary Response Data," Biometrics, The International Biometric Society, vol. 55(1), pages 85-93, March.
    2. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    3. S. Rabe-Hesketh & A. Skrondal, 2001. "Parameterization of Multivariate Random Effects Models for Categorical Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1256-1263, December.
    4. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    2. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    3. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    4. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    6. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    7. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    8. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    9. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    10. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    11. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    12. Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
    13. Derek S. Young & Andrew M. Raim & Nancy R. Johnson, 2017. "Zero-inflated modelling for characterizing coverage errors of extracts from the US Census Bureau's Master Address File," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 73-97, January.
    14. Dimuthu Fernando & Mohammed Alqawba & Manar Samad & Norou Diawara, 2022. "Review of Copula for Bivariate Distributions of Zero-Inflated Count Time Series Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(6), pages 1-52, November.
    15. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    16. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    17. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    18. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    19. H. He & W. Wang & J. Hu & R. Gallop & P. Crits-Christoph & Y. Xia, 2015. "Distribution-free inference of zero-inflated binomial data for longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2203-2219, October.
    20. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:10:p:1661-1679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.