IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i4p834-859.html
   My bibliography  Save this article

A consistent goodness-of-fit test for huge dimensional and functional data

Author

Listed:
  • Marc Ditzhaus
  • Daniel Gaigall

Abstract

A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cramér-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals.

Suggested Citation

  • Marc Ditzhaus & Daniel Gaigall, 2018. "A consistent goodness-of-fit test for huge dimensional and functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(4), pages 834-859, October.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:4:p:834-859
    DOI: 10.1080/10485252.2018.1486402
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1486402
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1486402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    2. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:4:p:834-859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.