IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v26y2023i6p700-709.html
   My bibliography  Save this article

Interaction of rod decussation and crack growth in enamel

Author

Listed:
  • Siyong Liu
  • Yuanzhi Xu
  • Bingbing An
  • Dongsheng Zhang

Abstract

Enamel possesses ingenious hierarchical structure that gives rise to superior fracture resistance. Despite considerable efforts devoted to characterization of fracture behavior of enamel, the role of rod decussation in fracture of enamel is largely unknown. In this study, the features of rod decussation in the inner enamel are experimentally identified, and analyses of crack growth in enamel are carried out using a micromechanical model of enamel, in which the structural features of the outer enamel and rod decussation of the inner enamel are incorporated. We carry out calculations within a framework based on the extended finite element method, and the crack growth and crack path selection are natural outcomes of imposed loading. We show that crack deflection in enamel is controlled by rod decussation. For crack growth in the parazone, the crack path is oriented along the axis of enamel rods, leading to gross crack deflection. The microstructure of inner enamel with intermediate inclination angle enables multiple crack deflections, giving rise to enhanced toughness. For crack growth in the diazone, the transition in orientation of crack deflection occurs as inclination angle increases. The relatively straight crack path emerges in the case of the microstructure of enamel with intermediate inclination angle, leading to weak fracture resistance. It is further found that compared with the diazone, the gross crack deflection in the parazone provides greater contribution to fracture resistance of enamel. The findings of this study provide a good mechanistic understanding of the role of rod decussation in enamel.

Suggested Citation

  • Siyong Liu & Yuanzhi Xu & Bingbing An & Dongsheng Zhang, 2023. "Interaction of rod decussation and crack growth in enamel," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 26(6), pages 700-709, April.
  • Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:6:p:700-709
    DOI: 10.1080/10255842.2022.2084333
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2022.2084333
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2022.2084333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:26:y:2023:i:6:p:700-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.