IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v26y2023i3p350-372.html
   My bibliography  Save this article

An efficient and low complex model for optimal RBM features with weighted score-based ensemble multi-disease prediction

Author

Listed:
  • T. P. Anish
  • P. M. Joe Prathap

Abstract

Multi-disease prediction is regarded as the capacity to simultaneously identify various diseases that are expected to be affected an individual at a certain period. These multiple diseases are seemed to be at various progression levels and need to be detected in the patient at the time of clinical visits. Diverse studies in the literature have included the predictive models for particular diseases yet, it is unable to notice humans with multiple diseases since humans are mostly suffered not only from a single disease but also from multiple diseases. Hence, this article aims to implement a novel multi-disease prediction model using an ensemble learning approach with deep features. The required data for the multi-disease prediction is collected from the standard datasets. Then, the collected data are given into the “Deep Belief Network (DBN)” approach, where the features are obtained from the RBM layers. These RBM features are tuned with the help of Deviation-based Hybrid Grasshopper Barnacles Mating Optimization (D-HGBMO) for improving the prediction performance. The optimized RBM features are considered in the ensemble learning model named Ensemble, in which the multi-disease prediction is performed with “Deep Neural Network (DNN), Extreme Learning Machine (ELM), and Long Short Term Memory.” The predicted score from three classifiers is used in the optimized weighted score and thresholding-based final prediction using the same D-HGBMO for determining the accurate multi-disease prediction results. The experimental results show the effective performance of the proposed model by comparing it with the existing classifiers with the help of different quantitative measures.

Suggested Citation

  • T. P. Anish & P. M. Joe Prathap, 2023. "An efficient and low complex model for optimal RBM features with weighted score-based ensemble multi-disease prediction," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 26(3), pages 350-372, February.
  • Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:3:p:350-372
    DOI: 10.1080/10255842.2022.2129969
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2022.2129969
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2022.2129969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:26:y:2023:i:3:p:350-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.