IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v26y2023i14p1669-1677.html
   My bibliography  Save this article

Biomechanical effect of intervertebral disc degeneration on the lower lumbar spine

Author

Listed:
  • Hongkun Wang
  • Nan Li
  • Huiwen Huang
  • Peng Xu
  • Yubo Fan

Abstract

Lumbar intervertebral disc degeneration can induce bone hyperplasia, lumbar intervertebral disc herniation and other diseases, is one of the causes of low back pain, which seriously affects people’s quality of life. And the causes of degeneration are very complex, so it is essential to understand the underlying mechanism of intervertebral disc degeneration and its influence. In this study, biomechanical effects of L4∼L5 lumbar degeneration with different degrees of degeneration were studied based on the numerical simulations. The three-dimensional finite element model of normal L2∼S1 lumbar vertebrae was established based on CT images of average adult male and verified. Several key parameters (intervertebral disc height, nucleus pulposus size, properties of different materials, etc.) of the model were modified to construct L4∼L5 models with different degrees of degeneration (grade 1, grade 2, grade 3, and grade 4). The range of motion (ROM), the intradiscal pressure of the nucleus, and the maximum Von Mises stress were determined by applying torques in different directions to simulate the four postures of flexion, extension, lateral bending, and axial rotation under compression load (500 N) to simulate the upper body weight of the human body. In different postures, with the increase of L4∼L5 degeneration degree, the ROM of the L4∼L5 degeneration segment showed a decreasing trend (Grade 4 had decrease of 41.9% to 65.2% compared to normal at different postures), while the ROM of its adjacent normal segments showed an increasing trend (L3∼L4: Grade 4 had increase of 21%–94% compared to normal at different postures; L5∼S1: Grade 4 had increase of 32%–66% compared to normal at different postures). With the increase in the degree of degeneration, nucleus pulposus pressure in the L4∼L5 degeneration segment decreased continuously under different postural conditions (Grade 4 had decrease of 25%–134.6% compared to normal at different postures), while the nucleus pulposus pressure in adjacent normal segments (L3∼L4 and L5∼S1) showed a gradually increasing trend. The maximum Von Mises stress of the three segments increased with the increasing degree of degeneration at different postures (L4∼L5: Grade 4 increased to 1.75 ∼ 4 times compared to normal at different postures). In four different models of lumbar disc degeneration, the adjacent normal segment of the disc compensates for the movement and loading pattern of the degenerated segment. At the same time, the load pattern inside the degenerated segment also changes.

Suggested Citation

  • Hongkun Wang & Nan Li & Huiwen Huang & Peng Xu & Yubo Fan, 2023. "Biomechanical effect of intervertebral disc degeneration on the lower lumbar spine," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 26(14), pages 1669-1677, October.
  • Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:14:p:1669-1677
    DOI: 10.1080/10255842.2022.2129970
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2022.2129970
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2022.2129970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:26:y:2023:i:14:p:1669-1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.