IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v12y2009i3p333-339.html
   My bibliography  Save this article

Biomechanical evaluation of porous biodegradable scaffolds for revision knee arthroplasty

Author

Listed:
  • Alexandre Terrier
  • Marjan Sedighi-Gilani
  • Alireza Roshan Ghias
  • Line Aschwanden
  • Dominique P. Pioletti

Abstract

Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified parameterised geometries. The maximal gait cycle force was applied asymmetrically to simulate a critical loading. Several parameters were analysed: 1) inter-individual variability, 2) cortical bone stiffness, 3) cortical bone thickness, 4) prosthesis fixation quality, and 5) scaffold thickness. The calculated scaffold strain was compared to its experimental ultimate strain. Among the tested parameters, failure was only predicted with scaffold thickness below 5 mm. This study suggests that biodegradable bone scaffolds could be used to fill bone defects in revision knee arthroplasty, but scaffold size seems to be the limiting factor.

Suggested Citation

  • Alexandre Terrier & Marjan Sedighi-Gilani & Alireza Roshan Ghias & Line Aschwanden & Dominique P. Pioletti, 2009. "Biomechanical evaluation of porous biodegradable scaffolds for revision knee arthroplasty," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(3), pages 333-339.
  • Handle: RePEc:taf:gcmbxx:v:12:y:2009:i:3:p:333-339
    DOI: 10.1080/10255840802603589
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840802603589
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840802603589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Roshan-Ghias & A. Terrier & B.M. Jolles & D.P. Pioletti, 2014. "Translation of biomechanical concepts in bone tissue engineering: from animal study to revision knee arthroplasty," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(8), pages 845-852, June.
    2. Dominique P. Pioletti, 2010. "Biomechanics in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 837-846.
    3. Dominique P. Pioletti, 2013. "Integration of mechanotransduction concepts in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(10), pages 1050-1055, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:12:y:2009:i:3:p:333-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.