Advanced Search
MyIDEAS: Login to save this article or follow this journal

A dynamic binomial expansion technique for credit risk measurement: a Bayesian filtering approach

Contents:

Author Info

  • Wing Hoe Woo
  • Tak Kuen Siu

Abstract

Credit risk measurement and management are important and current issues in the modern finance world from both the theoretical and practical perspectives. There are two major schools of thought for credit risk analysis, namely the structural models based on the asset value model originally proposed by Merton and the intensity-based reduced form models. One of the popular credit risk models used in practice is the Binomial Expansion Technique (BET) introduced by Moody's. However, its one-period static nature and the independence assumption for credit entities' defaults are two shortcomings for the use of BET in practical situations. Davis and Lo provided elegant ways to ease the two shortcomings of BET with their default infection and dynamic continuous-time intensity-based approaches. This paper first proposes a discrete-time dynamic extension to the BET in order to incorporate the time-dependent and time-varying behaviour of default probabilities for measuring the risk of a credit risky portfolio. In reality, the 'true' default probabilities are unobservable to credit analysts and traders. Here, the uncertainties of 'true' default probabilities are incorporated in the context of a dynamic Bayesian paradigm. Numerical studies of the proposed model are provided.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860410001682669
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

Volume (Year): 11 (2004)
Issue (Month): 2 ()
Pages: 165-186

as in new window
Handle: RePEc:taf:apmtfi:v:11:y:2004:i:2:p:165-186

Contact details of provider:
Web page: http://www.tandfonline.com/RAMF20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/RAMF20

Related research

Keywords: credit risk measurement; binomial expansion technique (BET); default probabilities; Bayesian filtering method; value at risk (VaR);

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:11:y:2004:i:2:p:165-186. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.