IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i7d10.1007_s11269-024-03780-5.html
   My bibliography  Save this article

Improving Hydrological Modeling with Hybrid Models: A Comparative Study of Different Mechanisms for Coupling Deep Learning Models with Process-based Models

Author

Listed:
  • Yiming Wei

    (Tianjin University)

  • Renchao Wang

    (Tianjin University)

  • Ping Feng

    (Tianjin University)

Abstract

Accurate hydrological modeling is crucial for water resources management. Process-based models (PBMs) are physically interpretable yet cannot fully utilize large datasets. Deep learning models, especially Long Short-Term Memory (LSTM) networks, have exhibited remarkable simulation accuracy but lack physical interpretability. To integrate the strengths of PBMs and LSTM, this paper develops three hybrid models (HLUDC, HLBDC, and HLBDCT) by coupling LSTM with the HBV model. HLUDC incorporates the output of HBV into LSTM to enhance modeling capability. HLBDC connects the HBV model to an LSTM that estimates the parameters of HBV. HLBDCT further introduces time-varying parameters. Notably, the possible limitation of these models in data-scarce basins is unclear, as all models are trained with available observations. Therefore, we further evaluate the impact of the training data length on model stability. The hybrid models are applied to the daily streamflow simulation in the Jialing River Basin. The results indicate that the hybrid models effectively enhance streamflow simulation compared to benchmark models. HLBDCT performs the best with a 2.44%-13.43% improvement in Nash-Sutcliffe efficiency coefficient over HBV and LSTM, followed by HLBDC, while HLUDC performs the least. HLBDCT also performed well in simulating extreme flow. Both HLBDCT and HLBDC accurately estimate actual evapotranspiration without being trained on it, demonstrating their robust physical coherence. Furthermore, HBV, HLBDC, and HLBDCT exhibit higher stability when trained with different lengths of data compared to HLUDC and LSTM. Overall, this study provides a better understanding of the potential for using hybrid models to enhance hydrological simulation accuracy.

Suggested Citation

  • Yiming Wei & Renchao Wang & Ping Feng, 2024. "Improving Hydrological Modeling with Hybrid Models: A Comparative Study of Different Mechanisms for Coupling Deep Learning Models with Process-based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2471-2488, May.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03780-5
    DOI: 10.1007/s11269-024-03780-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03780-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03780-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03780-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.