IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i5d10.1007_s11269-024-03764-5.html
   My bibliography  Save this article

A Rapid Assessment Method for Flood Risk Mapping Integrating Aerial Point Clouds and Deep Learning

Author

Listed:
  • Xin Fang

    (Tianjin University
    Hong Kong Polytechnic University)

  • Jie Wu

    (Ministry of Water Resources)

  • Peiqi Jiang

    (Tianjin University
    Ministry of Water Resources)

  • Kang Liu

    (Tianjin University)

  • Xiaohua Wang

    (Tianjin University)

  • Sherong Zhang

    (Tianjin University)

  • Chao Wang

    (Tianjin University)

  • Heng Li

    (Hong Kong Polytechnic University)

  • Yishu Lai

    (Tianjin University)

Abstract

In recent years, floods have brought renewed attention and requirement for real-time and city-scaled flood forecasting due to climate change and urbanization. In this study, a rapid assessment method for flood risk mapping is proposed by integrating aerial point clouds and deep learning technique that is capable of superior modeling efficiency and analysis accuracy for flood risk mapping. The method includes four application modules, i.e., data acquisition and preprocessing by oblique photography, large-scale point clouds segmentation by RandLA-Net, high-precision digital elevation model (DEM) reconstruction by modified hierarchical smoothing filtering algorithm, and hydrodynamics simulation based on hydrodynamics. To demonstrate the advantages of the proposed rapid assessment method more clearly, a case study is conducted in a local area of the South-to-North Water Transfer Project in China. The proposed method achieved 70.85% in mean intersection over union (mIoU) and 88.70% in overall accuracy (OAcc), outperforming the PointNet and PointNet++ networks. For the case point cloud containing nearly 50 million points, the computation time is less than 9 min, while the computation times for PointNet and PointNet++ are both more than 24 h. Then, high-precision DEM reconstruction by proposed hierarchical smoothing method with topographic feature embedding. These results demonstrate the efficiency and accuracy of the proposed method in processing large-scale 3D point clouds and rapid assessment of flood risk, providing a new perspective and effective solution for flood risk mapping in the field of spatial information science.

Suggested Citation

  • Xin Fang & Jie Wu & Peiqi Jiang & Kang Liu & Xiaohua Wang & Sherong Zhang & Chao Wang & Heng Li & Yishu Lai, 2024. "A Rapid Assessment Method for Flood Risk Mapping Integrating Aerial Point Clouds and Deep Learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(5), pages 1753-1772, March.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03764-5
    DOI: 10.1007/s11269-024-03764-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03764-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03764-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03764-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.