IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i5d10.1007_s11269-024-03748-5.html
   My bibliography  Save this article

A Novel Runoff Prediction Model Based on Support Vector Machine and Gate Recurrent unit with Secondary Mode Decomposition

Author

Listed:
  • Jinghan Dong

    (Shanghai Ocean University)

  • Zhaocai Wang

    (Shanghai Ocean University)

  • Junhao Wu

    (Shanghai Ocean University)

  • Xuefei Cui

    (Shanghai Ocean University)

  • Renlin Pei

    (Shanghai Ocean University)

Abstract

Predicting runoff, one of the fundamental operations in hydrology, is crucial for directing the complete exploitation and use of local water resources. However, influenced by factors such as human activities and climate change, runoff displays typical nonlinear, non-stationary dynamic characteristics, which means it is challenging to achieve accurate runoff prediction in the research on water resources. In this research, we developed a hybrid model named CEEMDAN-FE-VMD-SVM-GRU for runoff prediction, which was built on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), fuzzy entropy (FE), variational mode decomposition (VMD), support vector machine (SVM), and gate recurrent unit (GRU). First, CEEMDAN was used to decompose the original daily runoff dataset into several intrinsic mode functions (IMF), followed by the introduction of FE to compute the complexity of each IMF component. The obtained FE calculation results greater than 0.4 were set as high-frequency sequences, and those lower than 0.4 as low-frequency sequences. Then, VMD was applied to perform the secondary decomposition of the high-frequency sequences, and SVM and GRU were trained to predict the primary and secondary decomposition parts, respectively. The results were finally obtained through linear combination. In this study, the daily runoff of the Minjiang River by this model was compared with those of other eight models. The findings demonstrate that the proposed model worked better than other models in a variety of evaluation metrics. In addition, this model showed better applicability in uncertainty interval estimation and flood prediction. Hence, this model proposed in this study has potential to be a preferred data-driven tool in hydrological prediction.

Suggested Citation

  • Jinghan Dong & Zhaocai Wang & Junhao Wu & Xuefei Cui & Renlin Pei, 2024. "A Novel Runoff Prediction Model Based on Support Vector Machine and Gate Recurrent unit with Secondary Mode Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(5), pages 1655-1674, March.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03748-5
    DOI: 10.1007/s11269-024-03748-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03748-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03748-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03748-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.