IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i4d10.1007_s11269-023-03725-4.html
   My bibliography  Save this article

Enhancing Flooding Depth Forecasting Accuracy in an Urban Area Using a Novel Trend Forecasting Method

Author

Listed:
  • Song-Yue Yang

    (Feng Chia University)

  • You-Da Jhong

    (Feng Chia University)

  • Bing-Chen Jhong

    (National Taiwan University of Science and Technology)

  • Yun-Yang Lin

    (Feng Chia University)

Abstract

Accurate flood runoff and water level predictions are crucial research topics due to their significance for early warning systems, particularly in improving peak flood level forecasts and reducing time lags. This study proposes a novel method, Trend Forecasting Method (TFM), to improve model accuracy and overcome the time lag problem due to data scarcity. The proposed method includes the following steps: (1) select appropriate input factors causing flood events, (2) determine the most suitable AI method as the basis for forecasting models, (3) a forecasting model using a multi-step-ahead approach and a forecasting model with variation in flood depth as input are developed as compared to the selected model in Step 2, and (4) according to the rising limb and falling limb of a flood hydrograph, the maximum and minimum values predicted by the models above are respectively selected as the final outputs. The application to demonstrate the advantages of the proposed method was conducted in the Annan District of Tainan City, Taiwan. Of all the models tested, the Gated Recurrent Unit (GRU) demonstrated superior accuracy in forecasting flood depths, followed by Long Short-Term Memory (LSTM) and Bidirectional LSTM, with the Back Propagation Neural Network falling behind. With a Nash–Sutcliffe efficiency coefficient (NSE) of 0.56 for the next hour’s forecast, the GRU model’s structure appears particularly fitting for flood depth forecast. However, all four models showed time lag issues. TFM substantially enhanced the GRU model’s forecast accuracy, mitigating the time lag. TFM achieved an NSE of 0.82 for forecasting 10-, 20-, 30-, 40-, 50-, and 60-min lead time. The observed flood depths had a 68% probability of consistent rise or fall, validating TFM’s underlying hypothesis. Furthermore, including an autoregressive model in TFM reduced the time lag problem.

Suggested Citation

  • Song-Yue Yang & You-Da Jhong & Bing-Chen Jhong & Yun-Yang Lin, 2024. "Enhancing Flooding Depth Forecasting Accuracy in an Urban Area Using a Novel Trend Forecasting Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(4), pages 1359-1380, March.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:4:d:10.1007_s11269-023-03725-4
    DOI: 10.1007/s11269-023-03725-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03725-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03725-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    BPNN; LSTM; GRU; BiLSTM; Flooding depth;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:4:d:10.1007_s11269-023-03725-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.