IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i8d10.1007_s11269-023-03502-3.html
   My bibliography  Save this article

A Procedure for Assessment of Environmental Flows Incorporating Inter- and Intra-Annual Variability in Dam-Regulated Watersheds

Author

Listed:
  • Ravindra Kumar Verma

    (Indian Institute of Technology)

  • Ashish Pandey

    (Indian Institute of Technology)

  • Surendra Kumar Mishra

    (Indian Institute of Technology)

  • Vijay P. Singh

    (Texas A&M University)

Abstract

Many investigations have highlighted the importance of 32 indicators of RVA method and its modified framework in the evaluation of inter-annual and/or intra-annual low and high flow variability in river systems. Yet none of the previous investigations have taken inter-annual and intra-annual minimum e-flow variability for preserving aquatic organisms, especially in dry periods. To this end, this study proposed a procedure which consisted of modified 72 hydrologic indicators and Tennant method and applied the procedure to five sub-watersheds of Damodar catchment, India. Results showed (1) high intra-annual and inter-annual variability of all indicators within water years; (2) that none of the studied watersheds met the 10% minimum flow criterion for poor habitat conditions as recommended by Tennant method in dry years and as well as most of time none of the watersheds exhibited the availability of assured e-flow in all water years; and (3) that aquatic organisms of the catchment would become more vulnerable in the future.

Suggested Citation

  • Ravindra Kumar Verma & Ashish Pandey & Surendra Kumar Mishra & Vijay P. Singh, 2023. "A Procedure for Assessment of Environmental Flows Incorporating Inter- and Intra-Annual Variability in Dam-Regulated Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3259-3297, June.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03502-3
    DOI: 10.1007/s11269-023-03502-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03502-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03502-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeed Nikghalb & Alireza Shokoohi & Vijay P. Singh & Ruihong Yu, 2016. "Ecological Regime versus Minimum Environmental Flow:Comparison of Results for a River in a Semi Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4969-4984, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byungwoong Choi & Byungik Kim & Jonghwan Park & Tae-Woo Kang & Dong-Seok Shin & Eun Hye Na & Jiyeon Choi, 2022. "An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    2. Kim, Seung Ki & Choi, Sung-Uk, 2018. "Prediction of suitable feeding habitat for fishes in a stream using physical habitat simulations," Ecological Modelling, Elsevier, vol. 385(C), pages 65-77.
    3. Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
    4. Mahdi Sedighkia & Asghar Abdoli, 2022. "Optimizing environmental flow regime by integrating river and reservoir ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2079-2094, April.
    5. Soohong Kim & Kichul Jung & Hyeongsik Kang, 2022. "Response of Fish Community to Building Block Methodology Mimicking Natural Flow Regime Patterns in Nakdong River in South Korea," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    6. Wei Xu, 2020. "Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4725-4738, December.
    7. Wentong Hu & Wenquan Gu & Donghao Miao & Dongguo Shao, 2022. "Research on the Ecological Flow and Water Replenishment Thresholds for Diversion Rivers Based on the MC-LOR Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5353-5369, November.
    8. Xin Yan & Yuejian Wang & Yuejiao Chen & Guang Yang & Baofei Xia & Hailiang Xu, 2022. "Study on the Spatial Allocation of Receding Land and Water Reduction under Water Resource Constraints in Arid Zones," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    9. Rong-Song Chen & Chan-Ming Tsai, 2017. "Development of an Evaluation System for Sustaining Reservoir Functions—A Case Study of Shiwen Reservoir in Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03502-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.