IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i1d10.1007_s11269-022-03383-y.html
   My bibliography  Save this article

Joint-Probabilistic Double-Sided Random Interval Programming for Booster Optimization in Water Distribution Network

Author

Listed:
  • Yumin Wang

    (Southeast University)

Abstract

In this paper, a joint-probabilistic double-sided random interval chance-constrained programming (JDRICCP) model was proposed to deal with the random and interval uncertainties in both sides of the constraints and nodal joint probability in booster cost optimization of water distribution system (WDS). The JDRICCP model was applied to two Cases to verify the efficiency of the method on the booster cost optimization under uncertainty. After formulating the JDRICCP model, the booster costs under various violation levels based on four nodal importance measures can be obtained for two Cases. The results indicated that the booster costs are only affected by lower violation probability, and decreased with the rise of violation levels. In addition, the booster costs are closely related to the nodal importance measures. By comparing the booster costs under random interval variables and random variables, the results indicated that under random interval variables the booster costs are less than that under random variables. The results obtained can provide more information for managers to make boosters schemes under dual uncertainties of random and interval.

Suggested Citation

  • Yumin Wang, 2023. "Joint-Probabilistic Double-Sided Random Interval Programming for Booster Optimization in Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 501-520, January.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03383-y
    DOI: 10.1007/s11269-022-03383-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03383-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03383-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Cimorelli & F. Morlando & L. Cozzolino & A. D’Aniello & D. Pianese, 2018. "Comparison Among Resilience and Entropy Index in the Optimal Rehabilitation of Water Distribution Networks Under Limited-Budgets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3997-4011, September.
    2. Shipeng Chu & Tuqiao Zhang & Xinhong Zhou & Tingchao Yu & Yu Shao, 2022. "An Efficient Approach for Nodal Water Demand Estimation in Large-scale Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 491-505, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Cunha & João Marques & Dragan Savić, 2020. "A Flexible Approach for the Reinforcement of Water Networks Using Multi-Criteria Decision Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4469-4490, November.
    2. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Ram Kailash Prasad, 2021. "Identification of Critical Pipes for Water Distribution Network Rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5187-5204, December.
    4. Luigi Cimorelli & Carmine Covelli & Bruno Molino & Domenico Pianese, 2020. "Optimal Regulation of Pumping Station in Water Distribution Networks Using Constant and Variable Speed Pumps: A Technical and Economical Comparison," Energies, MDPI, vol. 13(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03383-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.