IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i10d10.1007_s11269-023-03529-6.html
   My bibliography  Save this article

Assessing Sustainable Development of Deep Aquifers

Author

Listed:
  • Annette Dietmaier

    (Technical University Munich)

  • Thomas Baumann

    (Technical University Munich)

Abstract

Deep groundwater aquifers are exploited for a variety of purposes. In general, impermeable rock layers protect these aquifers from anthropogenic influences. As such, they are a last resort for groundwater in a pre-industrial state, and a crucial resource in cases of emergency, such as floods contaminating shallow groundwater. The EU Water Framework Directive (WFD) provides the regulatory framework to protect its quality and quantity. Recent monitoring of the hydrochemical state of Upper Jurassic wells in Bavaria and Austria has shown fluctuations that were connected to new exploitation activities and might indicate an unsustainable development of the aquifer. We propose a new workflow in accordance with the WFD which uses clustering algorithms to assess these fluctuations. Our data consists of 5 to 42 hydrochemical analyses per well with yearly sampling intervals spanning up to 30 years. From the cluster analysis we derived thresholds for two corridors: Natural Range Corridor (NC) and Action Corridor (AC). While the NC represents a well-specific natural variation range, the AC hints towards unsustainable development and should trigger a detailed (re)assessment. To show the potential of the new method, the workflow was applied to two wells with different geological characteristics. Distinct fluctuation events were clearly recognized and can be used in the context of an early warning system, such that malign hydrochemical variations can be detected before they become legally problematic to well operators. Our workflow thus provides a novel, robust, and reproducible method to assess the grade of sustainability at which a well is exploited and ensures a good status of a unique and important resource.

Suggested Citation

  • Annette Dietmaier & Thomas Baumann, 2023. "Assessing Sustainable Development of Deep Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3857-3874, August.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03529-6
    DOI: 10.1007/s11269-023-03529-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03529-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03529-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Foster & Emilio Custodio, 2019. "Groundwater Resources and Intensive Agriculture in Europe – Can Regulatory Agencies Cope with the Threat to Sustainability?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2139-2151, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuluaga-Guerra, Paula Andrea & Martinez-Fernandez, Julia & Esteve-Selma, Miguel Angel & Dell'Angelo, Jampel, 2023. "A socio-ecological model of the Segura River basin, Spain," Ecological Modelling, Elsevier, vol. 478(C).
    2. Jaime Martínez-Valderrama & Gabriel del Barrio & María E. Sanjuán & Emilio Guirado & Fernando T. Maestre, 2022. "Desertification in Spain: A Sound Diagnosis without Solutions and New Scenarios," Land, MDPI, vol. 11(2), pages 1-13, February.
    3. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03529-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.