IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i3d10.1007_s11269-018-2179-y.html
   My bibliography  Save this article

Leakage Identification in Water Distribution Networks with Error Tolerance Capability

Author

Listed:
  • Xiang Xie

    (Zhejiang University)

  • Dibo Hou

    (Zhejiang University)

  • Xiaoyu Tang

    (Zhejiang University)

  • Hongjian Zhang

    (Zhejiang University)

Abstract

Leakages in water distribution networks have caused considerable waste of water resources. Thus, this study proposes a novel method for hydraulically monitoring and identifying regions where leakages occur in near-real time. A large network is first divided into several identification regions. To exploit a strong constructive and discriminative power, sparse coding is used, thereby adaptively coding the information embedded in observed pressures efficiently and succinctly. And a linear classifier is trained to determine the most likely leakage regions. A benchmark case is presented in this study to demonstrate the effectiveness of the proposed method. Results indicate that the proposed method can identify leakage events with enhanced tolerance capability for measurement errors. The method is also partially effective for identifying two simultaneous leakages. Certain practical advice in balancing the number of sensors and regions is also discussed to enhance the application potential of this method.

Suggested Citation

  • Xiang Xie & Dibo Hou & Xiaoyu Tang & Hongjian Zhang, 2019. "Leakage Identification in Water Distribution Networks with Error Tolerance Capability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1233-1247, February.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2179-y
    DOI: 10.1007/s11269-018-2179-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2179-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2179-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erfan Hajibandeh & Sara Nazif, 2018. "Pressure Zoning Approach for Leak Detection in Water Distribution Systems Based on a Multi Objective Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2287-2300, May.
    2. P. Sivakumar & R. Prasad, 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3271-3290, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caroline Blocher & Filippo Pecci & Ivan Stoianov, 2021. "Prior Assumptions for Leak Localisation in Water Distribution Networks with Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5105-5118, December.
    2. Molinos-Senante, MarĂ­a & Villegas, Andres & Maziotis, Alexandros, 2019. "Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile," Utilities Policy, Elsevier, vol. 61(C).
    3. Qianping Zhang & Zhaofei Tian & Shuaijie Lu & Huilun Kang, 2023. "Numerical Simulation of Water Hammer in Pipeline System Using Efficient Wave Tracking Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3053-3068, June.
    4. Mohammad Bostan & Amir Hossein Azimi & Ali Akbar Akhtari & Hossein Bonakdari, 2021. "An Implicit Approach for Numerical Simulation of Water Hammer Induced Pressure in a Straight Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5155-5167, December.
    5. Juan Li & Wenjun Zheng & Changgang Lu, 2022. "An Accurate Leakage Localization Method for Water Supply Network Based on Deep Learning Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2309-2325, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    2. L. Berardi & O. Giustolisi, 2021. "Calibration of Design Models for Leakage Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2537-2551, June.
    3. Xuan Khoa Bui & Gimoon Jeong & Doosun Kang, 2022. "Adaptive DMA Design and Operation under Multiscenarios in Water Distribution Networks," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    4. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.
    5. Rejeesh Rayaroth & Sivaradje G, 2019. "Random Bagging Classifier and Shuffled Frog Leaping Based Optimal Sensor Placement for Leakage Detection in WDS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3111-3125, July.
    6. D. Paez & C. R. Suribabu & Y. Filion, 2018. "Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2837-2846, June.
    7. E. Pacchin & S. Alvisi & M. Franchini, 2017. "Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 75-91, January.
    8. Chan-Wook Lee & Do-Guen Yoo, 2021. "Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    9. Nikolai B. Gorev & Vyacheslav N. Gorev & Inna F. Kodzhespirova & Igor A. Shedlovsky & P. Sivakumar, 2022. "Dealing with Zero Flows in the Simulation of Water Distribution Networks with Low-Resistance Pipes Using the Global Gradient Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1679-1691, March.
    10. Ram Kailash Prasad, 2021. "Identification of Critical Pipes for Water Distribution Network Rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5187-5204, December.
    11. K. S. Jinesh Babu, 2021. "Fictitious Component Free - Pressure Deficient Network Algorithm for Water Distribution Network with Variable Minimum and Required Pressure-Heads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2585-2600, June.
    12. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2179-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.