IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i7d10.1007_s11269-018-1943-3.html
   My bibliography  Save this article

Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits

Author

Listed:
  • Alida Alves

    (IHE-Delft)

  • Berry Gersonius

    (IHE-Delft)

  • Arlex Sanchez

    (IHE-Delft)

  • Zoran Vojinovic

    (IHE-Delft)

  • Zoran Kapelan

    (University of Exeter)

Abstract

Continuous changes in climate conditions combined with urban population growth pose cities as one of the most vulnerable areas to increasing flood risk. In such an atmosphere of growing uncertainty, a more effective flood risk management is becoming crucial. Nevertheless, decision-making and selection of adequate systems is a difficult task due to complex interactions between natural, social and built environments. The combination of green (or sustainable) and grey (or traditional) options has been proposed as a way forward to ensure resilience in advance of extreme events, and at the same time to obtain co-benefits for society and the environment. The present paper describes a novel method for selection of urban flood measures, based on a multi-criteria analysis that includes flood risk reduction, cost minimization and enhancement of co-benefits. The aim of this method is to assist decision makers in selecting and planning measures, which afterwards can be part of either high level scoping analysis or more complex studies, such as model based assessment. The proposed method is implemented within a tool which operates as a standalone application. Through this tool, the method has been applied in three study cases. The findings obtained indicate promising potential of the method here introduced.

Suggested Citation

  • Alida Alves & Berry Gersonius & Arlex Sanchez & Zoran Vojinovic & Zoran Kapelan, 2018. "Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2505-2522, May.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1943-3
    DOI: 10.1007/s11269-018-1943-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1943-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1943-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin, C. & Ruperd, Y. & Legret, M., 2007. "Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices," European Journal of Operational Research, Elsevier, vol. 181(1), pages 338-349, August.
    2. Abhas K. Jha & Robin Bloch & Jessica Lamond, . "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications, The World Bank, number 2241, September.
    3. Carlos Bana e Costa & Paula Antão da Silva & Francisco Nunes Correia, 2004. "Multicriteria Evaluation of Flood Control Measures: The Case of Ribeira do Livramento," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 263-283, June.
    4. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda J. Watkin & Laddaporn Ruangpan & Zoran Vojinovic & Sutat Weesakul & Arlex Sanchez Torres, 2019. "A Framework for Assessing Benefits of Implemented Nature-Based Solutions," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    2. Adaku Jane Echendu, 2022. "Flooding, Food Security and the Sustainable Development Goals in Nigeria: An Assemblage and Systems Thinking Approach," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    3. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    4. Shi Qiu & Haiwei Yin & Jinling Deng & Muhan Li, 2020. "Cost-Effectiveness Analysis of Green–Gray Stormwater Control Measures for Non-Point Source Pollution," IJERPH, MDPI, vol. 17(3), pages 1-13, February.
    5. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    6. Sabina Kordana & Daniel Słyś, 2020. "Decision Criteria for the Development of Stormwater Management Systems in Poland," Resources, MDPI, vol. 9(2), pages 1-21, February.
    7. Ireneusz Nowogoński, 2021. "Runoff Volume Reduction Using Green Infrastructure," Land, MDPI, vol. 10(3), pages 1-24, March.
    8. Shengnan Yang & Laddaporn Ruangpan & Arlex Sanchez Torres & Zoran Vojinovic, 2023. "Multi-objective Optimisation Framework for Assessment of Trade-Offs between Benefits and Co-benefits of Nature-based Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2325-2345, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    2. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    3. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    4. Liquete, Camino & Udias, Angel & Conte, Giulio & Grizzetti, Bruna & Masi, Fabio, 2016. "Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits," Ecosystem Services, Elsevier, vol. 22(PB), pages 392-401.
    5. Siyu Zeng & Jining Chen & Ping Fu, 2008. "Strategic Zoning for Urban Wastewater Reuse in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1297-1309, September.
    6. S. Toosi & J. Samani, 2012. "Evaluating Water Transfer Projects Using Analytic Network Process (ANP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1999-2014, May.
    7. Marttunen, Mika & Belton, Valerie & Lienert, Judit, 2018. "Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of Multi-Criteria Decision Analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 178-194.
    8. Paulo J. Ramísio & Rita Salgado Brito & Paula Beceiro, 2022. "Accessing Synergies and Opportunities between Nature-Based Solutions and Urban Drainage Systems," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    9. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    10. Saeid Ghafoori & Hossein Hassanpour Darvishi & Hossein Mohamadvali Samani & Pezhman Taherei Ghazvinei, 2021. "Enhancing the Method of Decentralized Multi-Purpose Reuse of Wastewater in Urban Area," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    11. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    12. Madson Bruno da Silva Monte & Danielle Costa Morais, 2019. "A Decision Model for Identifying and Solving Problems in an Urban Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4835-4848, November.
    13. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    14. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    15. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    16. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    17. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    18. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    19. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    20. Cindy Córdoba & Catalina Triviño & Javier Toro Calderón, 2020. "Agroecosystem resilience. A conceptual and methodological framework for evaluation," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1943-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.