IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i12p3515-3538.html
   My bibliography  Save this article

Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments

Author

Listed:
  • Jairo Diaz-Ramirez
  • William McAnally
  • James Martin

Abstract

This research evaluated the impact of three rainfall datasets on hydrologic process simulations in two coastal catchments located in Alabama. In this study, rain gauge time series recorded by the U.S. National Oceanic and Atmospheric Administration (NOAA) and Geological Survey (USGS) along with radar precipitation data derived from NOAA National Weather Service (NWS) were input into the Hydrological Simulation Program—FORTRAN (HSPF). Automatic parameter calibration was performed using daily streamflow data recorded at USGS Fish and Magnolia River gauge stations from 07/01/2002 to 12/31/2008. HSPF parameters were optimized using the Model-Independent Parameter Estimation (PEST) program. Model parameter ranges were refined by incorporating physical characteristic of the study areas and after analyzing observed streamflow time series. This approach, in turn, helped PEST optimization tool to find the most physically-related set of parameters that can be transferred to any watershed with similar characteristics and minimum parameter calibration. On average, annual USGS and radar rainfall values were around 480 mm and 250 mm, respectively lower than NOAA precipitation records. Overall, it is found that the NOAA precipitation input data resulted in better daily flow simulations than results from radar and USGS rainfall time series. Streamflows derived from USGS rainfall time series showed the worst model performance at both catchment outlets because of missing data, low amounts, and temporal delay of peaks. This study found that annual actual evapotranspiration values were closed among rainfall time series and varied from 900 to 958 mm. Deep percolation values for Magnolia and Fish River, regardless of rainfall source, ranged from 66 to 192 mm/year. Major discrepancies were found at storm runoff values. Gauge rainfall time series yielded the closest streamflow values compared to observed flow time series at both watershed outlets. Rainfall derived from radar yielded consistent and acceptable runoff results in Fish and Magnolia River models. In both case studies, the high spatial variability of rainfall storm events was not adequately captured by any of the rainfall datasets and yielded high uncertainty in model results. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Jairo Diaz-Ramirez & William McAnally & James Martin, 2012. "Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3515-3538, September.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:12:p:3515-3538
    DOI: 10.1007/s11269-012-0088-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0088-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0088-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meiyan Yu & Xi Chen & Lanhai Li & Anming Bao & Mupenzi Paix, 2011. "Streamflow Simulation by SWAT Using Different Precipitation Sources in Large Arid Basins with Scarce Raingauges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2669-2681, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Chen & Tao Yang & Xiaoyan Wang & Chong-Yu Xu & Zhongbo Yu, 2013. "Uncertainty Intercomparison of Different Hydrological Models in Simulating Extreme Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1393-1409, March.
    2. Zhaofu Li & Chuan Luo & Kaixia Jiang & Rongrong Wan & Hengpeng Li, 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    3. Chuan Luo & Zhaofu Li & Hengpeng Li & Xiaomin Chen, 2015. "Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake," IJERPH, MDPI, vol. 12(9), pages 1-19, September.
    4. Hai-Long Liu & An-Ming Bao & Xiang-Liang Pan & Xi Chen, 2013. "Effect of Land-Use Change and Artificial Recharge on the Groundwater in an Arid Inland River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3775-3790, August.
    5. Chih-Chiang Wei, 2020. "Real-time Extreme Rainfall Evaluation System for the Construction Industry Using Deep Convolutional Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2787-2805, July.
    6. Simon Deslauriers & Tew-Fik Mahdi, 2018. "Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 697-715, March.
    7. Andrzej WALEGA & Leszek KSIAZEK, 2016. "Influence of rainfall data on the uncertainty of flood simulation," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 277-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    2. Akansha Kushwaha & Manoj Jain, 2013. "Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3005-3023, June.
    3. Shanhu Jiang & Liliang Ren & Yang Hong & Xiaoli Yang & Mingwei Ma & Yu Zhang & Fei Yuan, 2014. "Improvement of Multi-Satellite Real-Time Precipitation Products for Ensemble Streamflow Simulation in a Middle Latitude Basin in South China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2259-2278, June.
    4. Aijing Zhang & Chi Zhang & Guobin Fu & Bende Wang & Zhenxin Bao & Hongxing Zheng, 2012. "Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2199-2217, June.
    5. Hongbo Ling & Hailiang Xu & Jinyi Fu, 2013. "Temporal and Spatial Variation in Regional Climate and its Impact on Runoff in Xinjiang, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 381-399, January.
    6. Muhammad Azmat & Francesco Laio & Davide Poggi, 2015. "Estimation of Water Resources Availability and Mini-Hydro Productivity in High-Altitude Scarcely-Gauged Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5037-5054, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:12:p:3515-3538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.