IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v25y2016i3d10.1007_s11749-015-0463-1.html
   My bibliography  Save this article

Revisiting the two-sample runs test

Author

Listed:
  • Ludwig Baringhaus

    (Leibniz Universität Hannover)

  • Norbert Henze

    (Institut für Stochastik)

Abstract

We give new representations for the two-sample runs test statistic, derive explicit expressions of its mean and variance also in the general non-null case, and present an elementary proof of the consistency of the runs test.

Suggested Citation

  • Ludwig Baringhaus & Norbert Henze, 2016. "Revisiting the two-sample runs test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 432-448, September.
  • Handle: RePEc:spr:testjl:v:25:y:2016:i:3:d:10.1007_s11749-015-0463-1
    DOI: 10.1007/s11749-015-0463-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-015-0463-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-015-0463-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    2. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    3. Munmun Biswas & Minerva Mukhopadhyay & Anil K. Ghosh, 2014. "A distribution-free two-sample run test applicable to high-dimensional data," Biometrika, Biometrika Trust, vol. 101(4), pages 913-926.
    4. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    2. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    3. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    4. Mondal, Pronoy K. & Biswas, Munmun & Ghosh, Anil K., 2015. "On high dimensional two-sample tests based on nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 168-178.
    5. Jun Li, 2018. "Asymptotic normality of interpoint distances for high-dimensional data with applications to the two-sample problem," Biometrika, Biometrika Trust, vol. 105(3), pages 529-546.
    6. Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    7. Reza Modarres, 2018. "Multinomial interpoint distances," Statistical Papers, Springer, vol. 59(1), pages 341-360, March.
    8. Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    9. Van Bever, Germain, 2016. "Simplicial bivariate tests for randomness," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 20-25.
    10. Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
    11. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    12. Sakineh Dehghan & Mohammad Reza Faridrohani, 2019. "Affine invariant depth-based tests for the multivariate one-sample location problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 671-693, September.
    13. Xu Li & Wenjuan Hu & Baoxue Zhang, 2023. "Measuring and testing homogeneity of distributions by characteristic distance," Statistical Papers, Springer, vol. 64(2), pages 529-556, April.
    14. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    15. Zhi Peng Ong & Aixiang Andy Chen & Tianming Zhu & Jin-Ting Zhang, 2023. "Testing Equality of Several Distributions at High Dimensions: A Maximum-Mean-Discrepancy-Based Approach," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    16. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    17. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.
    18. Luai Al-Labadi & Forough Fazeli Asl & Zahra Saberi, 2022. "A Bayesian nonparametric multi-sample test in any dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 217-242, June.
    19. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:25:y:2016:i:3:d:10.1007_s11749-015-0463-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.