IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i6d10.1007_s00362-018-1058-1.html
   My bibliography  Save this article

Randomized versus non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses

Author

Listed:
  • Nataliya Chukhrova

    (University of Hamburg)

  • Arne Johannssen

    (University of Hamburg)

Abstract

This paper is concerned with fuzzy hypothesis testing in the framework of the randomized and non-randomized hypergeometric test for a proportion. Moreover, we differentiate between a test of significance and an alternative test to control the type I error or both error types simultaneously. In contrast to classical (non-)randomized hypothesis testing, fuzzy hypothesis testing provides an additional gradual consideration of the indifference zone in compliance with expert opinion or user priorities. In particular, various types of hypotheses with user-specified membership functions can be formulated. Additionally, the proposed test methods are compared via a comprehensive case study, which demonstrates the high flexibility of fuzzy hypothesis testing in practical applications.

Suggested Citation

  • Nataliya Chukhrova & Arne Johannssen, 2020. "Randomized versus non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses," Statistical Papers, Springer, vol. 61(6), pages 2605-2641, December.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-1058-1
    DOI: 10.1007/s00362-018-1058-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-1058-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-1058-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard Arnold, 1996. "An approach to fuzzy hypothesis testing," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 44(1), pages 119-126, December.
    2. P. Filzmoser & R. Viertl, 2004. "Testing hypotheses with fuzzy data: The fuzzy p-value," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(1), pages 21-29, February.
    3. Hamzeh Torabi & Javad Behboodian, 2007. "Likelihood ratio tests for fuzzy hypotheses testing," Statistical Papers, Springer, vol. 48(3), pages 509-522, September.
    4. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2012. "Testing fuzzy hypotheses based on vague observations: a p-value approach," Statistical Papers, Springer, vol. 53(2), pages 469-484, May.
    5. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2010. "Fuzzy p-value in testing fuzzy hypotheses with crisp data," Statistical Papers, Springer, vol. 51(1), pages 209-226, January.
    6. Hamzeh Torabi & Javad Behboodian & S. Taheri, 2006. "Neyman–Pearson Lemma for Fuzzy Hypotheses Testing with Vague Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(3), pages 289-304, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shima Yosefi & Mohsen Arefi & Mohammad Ghasem Akbari, 2016. "A new approach for testing fuzzy hypotheses based on likelihood ratio statistic," Statistical Papers, Springer, vol. 57(3), pages 665-688, September.
    2. Abbas Parchami & S. Mahmoud Taheri & Reinhard Viertl & Mashaallah Mashinchi, 2018. "Minimax test for fuzzy hypotheses," Statistical Papers, Springer, vol. 59(4), pages 1623-1648, December.
    3. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2012. "Testing fuzzy hypotheses based on vague observations: a p-value approach," Statistical Papers, Springer, vol. 53(2), pages 469-484, May.
    4. S. Taheri & G. Hesamian, 2013. "A generalization of the Wilcoxon signed-rank test and its applications," Statistical Papers, Springer, vol. 54(2), pages 457-470, May.
    5. Jung-Lin Hung & Cheng-Che Chen & Chun-Mei Lai, 2020. "Possibility Measure of Accepting Statistical Hypothesis," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    6. Wu, Chien-Wei, 2009. "Decision-making in testing process performance with fuzzy data," European Journal of Operational Research, Elsevier, vol. 193(2), pages 499-509, March.
    7. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2010. "Fuzzy p-value in testing fuzzy hypotheses with crisp data," Statistical Papers, Springer, vol. 51(1), pages 209-226, January.
    8. Muhammad Aslam, 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology," Stats, MDPI, vol. 5(3), pages 1-11, August.
    9. Fernando Reche & María Morales & Antonio Salmerón, 2020. "Statistical Parameters Based on Fuzzy Measures," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    10. Bernhard Arnold & Oke Gerke, 2003. "Testing fuzzy linear hypotheses in linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 57(1), pages 81-95, February.
    11. Gia Sirbiladze & Tariel Khvedelidze, 2023. "Associated Statistical Parameters’ Aggregations in Interactive MADM," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    12. Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
    13. Hsu, Bi-Min & Shu, Ming-Hung, 2008. "Fuzzy inference to assess manufacturing process capability with imprecise data," European Journal of Operational Research, Elsevier, vol. 186(2), pages 652-670, April.
    14. Lubiano, María Asunción & Montenegro, Manuel & Sinova, Beatriz & de la Rosa de Sáa, Sara & Gil, María Ángeles, 2016. "Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications," European Journal of Operational Research, Elsevier, vol. 251(3), pages 918-929.
    15. Mohammad Ghasem Akbari & Gholamreza Hesamian, 2017. "Record value based on intuitionistic fuzzy random variables," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(15), pages 3305-3315, November.
    16. Viertl, Reinhard, 2006. "Univariate statistical analysis with fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 133-147, November.
    17. Nenghui Kuang & Huantian Xie, 2013. "Large and moderate deviations in testing Rayleigh diffusion model," Statistical Papers, Springer, vol. 54(3), pages 591-603, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-1058-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.