IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v25y2016i4d10.1007_s10260-016-0352-0.html
   My bibliography  Save this article

Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields

Author

Listed:
  • Claudio Durastanti

    (University of Tor Vergata
    Ruhr University)

Abstract

The aim of this paper is to establish rates of convergence to Gaussianity for wavelet coefficients on circular Poisson random fields. This result is established by using the Stein–Malliavin techniques introduced by Peccati and Zheng (Electron J Probab 15(48):1487–1527, 2010) and the concentration properties of so-called Mexican needlets on the circle.

Suggested Citation

  • Claudio Durastanti, 2016. "Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 651-673, November.
  • Handle: RePEc:spr:stmapp:v:25:y:2016:i:4:d:10.1007_s10260-016-0352-0
    DOI: 10.1007/s10260-016-0352-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-016-0352-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-016-0352-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durastanti, Claudio & Geller, Daryl & Marinucci, Domenico, 2012. "Adaptive nonparametric regression on spin fiber bundles," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 16-38, February.
    2. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    3. Li, Yongming & Wei, Chengdong & Xing, Guodong, 2011. "Berry-Esseen bounds for wavelet estimator in a regression model with linear process errors," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 103-110, January.
    4. Di Marzio, Marco & Panzera, Agnese & Taylor, Charles C., 2009. "Local polynomial regression for circular predictors," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2066-2075, October.
    5. Christophe Ley & Camille Sabbah & Thomas Verdebout, 2014. "A new concept of quantiles for directional data and the angular Mahalanobis depth," Working Papers ECARES ECARES 2013-23, ULB -- Universite Libre de Bruxelles.
    6. Lan, Xiaohong & Marinucci, Domenico, 2009. "On the dependence structure of wavelet coefficients for spherical random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3749-3766, October.
    7. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    8. Klemelä, Jussi, 2000. "Estimation of Densities and Derivatives of Densities with Directional Data," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 18-40, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    2. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Local binary regression with spherical predictors," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 30-36.
    3. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    4. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
    5. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    6. Zihao Wu & Carolina Euan & Rosa M. Crujeiras & Ying Sun, 2023. "Estimation and Clustering of Directional Wave Spectra," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 502-525, September.
    7. Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.
    8. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    9. Fernández de Marcos Giménez de los Galanes, Alberto & García Portugués, Eduardo, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    11. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    12. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    13. Giuseppe Pandolfo & Antonio D’ambrosio, 2023. "Clustering directional data through depth functions," Computational Statistics, Springer, vol. 38(3), pages 1487-1506, September.
    14. Fernández-de-Marcos, Alberto & García-Portugués, Eduardo, 2023. "Data-driven stabilizations of goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    15. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    16. Chen, Kun & Chan, Ngai Hang & Yau, Chun Yip & Hu, Jie, 2023. "Penalized Whittle likelihood for spatial data," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    17. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    18. Bedouhene Kahina & Zougab Nabil, 2020. "A Bayesian procedure for bandwidth selection in circular kernel density estimation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 69-82, March.
    19. Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
    20. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:25:y:2016:i:4:d:10.1007_s10260-016-0352-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.