IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v90y2012i3d10.1007_s11192-011-0554-z.html
   My bibliography  Save this article

Network model of knowledge diffusion

Author

Listed:
  • Xia Gao

    (Inner Mongolia University)

  • Jiancheng Guan

    (Graduate University, Chinese Academy of Sciences
    Fudan University)

Abstract

This paper introduces a diffusion network model: an individual-citation-based directed network model with a time dimension, as a potentially useful approach to capture the diffusion of research topics. The approach combines social network analysis, network visualization and citation analysis to discuss some of the issues concerning the spread of scientific ideas. The process of knowledge diffusion is traced from a network point of view. Using research on the h-index as a case study, we built detailed networks of individual publications and demonstrated the feasibility of applying the diffusion network model to the spread of a research. The model shows the specific paths and associations of individual papers, and potentially complementing issues raised by epidemic models, which primarily deal with average properties of entire scientific communities. Also, based on the citation-based network, the technique of main path analysis identified the articles that influenced the research for some time and linked them into a research tradition that is the backbone of the h-index field.

Suggested Citation

  • Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
  • Handle: RePEc:spr:scient:v:90:y:2012:i:3:d:10.1007_s11192-011-0554-z
    DOI: 10.1007/s11192-011-0554-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0554-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0554-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calero-Medina, Clara & Noyons, Ed C.M., 2008. "Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field," Journal of Informetrics, Elsevier, vol. 2(4), pages 272-279.
    2. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    3. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    4. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    5. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI-fields as unit of diffusion," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    6. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    7. Lutz Bornmann & Hans‐Dieter Daniel, 2007. "What do we know about the h index?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1381-1385, July.
    8. Liming Liang, 2006. "h-index sequence and h-index matrix: Constructions and applications," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 153-159, October.
    9. Tibor Braun & Wolfgang Glänzel & András Schubert, 2006. "A Hirsch-type index for journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 169-173, October.
    10. Lutz Bornmann & Hans-Dieter Daniel, 2005. "Does the h-index for ranking of scientists really work?," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(3), pages 391-392, December.
    11. Alonso, S. & Cabrerizo, F.J. & Herrera-Viedma, E. & Herrera, F., 2009. "h-Index: A review focused in its variants, computation and standardization for different scientific fields," Journal of Informetrics, Elsevier, vol. 3(4), pages 273-289.
    12. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI‐fields as unit of diffusion," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bei Zeng & Haihua Lyu & Zhenyue Zhao & Jiang Li, 2021. "Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6253-6272, July.
    2. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    3. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    5. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    6. Zenghui Yue & Haiyun Xu & Guoting Yuan & Yan Qi, 2022. "Modeling knowledge diffusion in the disciplinary citation network based on differential dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7593-7613, December.
    7. Jiancheng Guan & Wenjia Zhu, 2014. "How knowledge diffuses across countries: a case study in the field of management," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2129-2144, March.
    8. Xia Cao & Chuanyun Li & Jinqiu Li & Yunchang Li, 2022. "Modeling and simulation of knowledge creation and diffusion in an industry-university-research cooperative innovation network: a case study of China’s new energy vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3935-3957, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiancheng Guan & Wenjia Zhu, 2014. "How knowledge diffuses across countries: a case study in the field of management," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2129-2144, March.
    2. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    4. Vieira, E.S. & Gomes, J.A.N.F., 2010. "A research impact indicator for institutions," Journal of Informetrics, Elsevier, vol. 4(4), pages 581-590.
    5. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    6. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    7. Mingkun Wei, 2020. "Research on impact evaluation of open access journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1027-1049, February.
    8. Bornmann, Lutz & Marx, Werner, 2012. "HistCite analysis of papers constituting the h index research front," Journal of Informetrics, Elsevier, vol. 6(2), pages 285-288.
    9. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    10. Anna Tietze & Philip Hofmann, 2019. "The h-index and multi-author hm-index for individual researchers in condensed matter physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 171-185, April.
    11. Mingers, John & Yang, Liying, 2017. "Evaluating journal quality: A review of journal citation indicators and ranking in business and management," European Journal of Operational Research, Elsevier, vol. 257(1), pages 323-337.
    12. Fiorenzo Franceschini & Domenico Maisano, 2011. "Bibliometric positioning of scientific manufacturing journals: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 463-485, February.
    13. Antonis Sidiropoulos & Dimitrios Katsaros & Yannis Manolopoulos, 2007. "Generalized Hirsch h-index for disclosing latent facts in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 253-280, August.
    14. Chen, Meiqian & Guo, Zhaoxia & Dong, Yucheng & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Citations optimal growth path: A tool to analyze sensitivity to citations of h-like indexes," Journal of Informetrics, Elsevier, vol. 15(4).
    15. Fiorenzo Franceschini & Domenico Maisano & Luca Mastrogiacomo, 2013. "The effect of database dirty data on h-index calculation," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1179-1188, June.
    16. Bornmann, Lutz & Ganser, Christian & Tekles, Alexander, 2022. "Simulation of the h index use at university departments within the bibliometrics-based heuristics framework: Can the indicator be used to compare individual researchers?," Journal of Informetrics, Elsevier, vol. 16(1).
    17. Brandão, Luana Carneiro & Soares de Mello, João Carlos Correia Baptista, 2019. "A multi-criteria approach to the h-index," European Journal of Operational Research, Elsevier, vol. 276(1), pages 357-363.
    18. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    19. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    20. Christopher McCarty & James W. Jawitz & Allison Hopkins & Alex Goldman, 2013. "Predicting author h-index using characteristics of the co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 467-483, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:90:y:2012:i:3:d:10.1007_s11192-011-0554-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.