IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i2d10.1007_s11192-020-03513-6.html
   My bibliography  Save this article

Reflections on and a short review of the science of team science

Author

Listed:
  • Yuxian Liu

    (Tongji University
    Tongji University
    Yunnan University)

  • Yishan Wu

    (Chinese Academy of Science and Technology for Development)

  • Sandra Rousseau

    (KU Leuven)

  • Ronald Rousseau

    (KU Leuven
    University of Antwerp)

Abstract

We provide a short overview of the science of team science (SciTS). Starting from the notion of a scientific team, we move to interdisciplinary studies and finally the Science of Team Science itself. We describe the main areas of research in this field. As co-authorship networks may grow over time, which can lead to a future “global brain”, understanding how teams work and what leads to their failure or success is of the utmost importance. A thorough study of team science in all its aspects needs a collaborative, interdisciplinary and international approach. Such an approach will result in reaching the main objective of SciTS, namely to use science to transform the ways researchers do science and to enhance their effectiveness.

Suggested Citation

  • Yuxian Liu & Yishan Wu & Sandra Rousseau & Ronald Rousseau, 2020. "Reflections on and a short review of the science of team science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 937-950, November.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:2:d:10.1007_s11192-020-03513-6
    DOI: 10.1007/s11192-020-03513-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03513-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03513-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kara L. Hall, 2017. "What makes teams tick," Nature, Nature, vol. 551(7682), pages 562-563, November.
    2. Fernanda Morillo & María Bordons & Isabel Gómez, 2001. "An approach to interdisciplinarity through bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 203-222, April.
    3. Tibor Braun & András Schubert, 2003. "A quantitative view on the coming of age of interdisciplinarity in the sciences 1980-1999," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 183-189, September.
    4. Raf Guns & Linda Sīle & Joshua Eykens & Frederik T. Verleysen & Tim C. E. Engels, 2018. "A comparison of cognitive and organizational classification of publications in the social sciences and humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1093-1111, August.
    5. Rennie, D. & Yank, V., 1998. "If authors became contributors, everyone would gain, especially the reader," American Journal of Public Health, American Public Health Association, vol. 88(5), pages 828-830.
    6. Yi Bu & Ying Ding & Xingkun Liang & Dakota S. Murray, 2018. "Understanding persistent scientific collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 438-448, March.
    7. Walsh, John P. & Lee, You-Na & Tang, Li, 2019. "Pathogenic organization in science: Division of labor and retractions," Research Policy, Elsevier, vol. 48(2), pages 444-461.
    8. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    9. Wesley S. Ward & Lisa M. Given, 2019. "Assessing intercultural communication: Testing technology tools for information sharing in multinational research teams," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(4), pages 338-350, April.
    10. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    11. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    12. Jesús Rey-Rocha & Belén Garzón-García & M. José Martín-Sempere, 2006. "Scientists' performance and consolidation of research teams in Biology and Biomedicine at the Spanish Council for Scientific Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(2), pages 183-212, November.
    13. Reindert K Buter & Ed C M Noyons & Anthony F J van Raan, 2010. "Identification of converging research areas using publication and citation data," Research Evaluation, Oxford University Press, vol. 19(1), pages 19-27, March.
    14. Arif Khan & Nazim Choudhury & Shahadat Uddin, 2019. "Few research fields play major role in interdisciplinary grant success," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 237-246, April.
    15. David Asai, 2019. "To learn inclusion skills, make it personal," Nature, Nature, vol. 565(7741), pages 537-537, January.
    16. Cummings, Jonathon N. & Kiesler, Sara, 2007. "Coordination costs and project outcomes in multi-university collaborations," Research Policy, Elsevier, vol. 36(10), pages 1620-1634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Bouabid & Hind Achachi, 2022. "Size of science team at university and internal co-publications: science policy implications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6993-7013, December.
    2. Ruinan Li & Raf Guns & Tim C. E. Engels & Lin Zhang & Ying Huang, 2023. "Tracking the featured topics of the International Science of Team Science conference series and their evolution during 2010–2019," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2447-2469, April.
    3. Dennis Essers & Francesco Grigoli & Evgenia Pugacheva, 2022. "Network effects and research collaborations: evidence from IMF Working Paper co-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7169-7192, December.
    4. Liu, Meijun & Jaiswal, Ajay & Bu, Yi & Min, Chao & Yang, Sijie & Liu, Zhibo & Acuña, Daniel & Ding, Ying, 2022. "Team formation and team impact: The balance between team freshness and repeat collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Ma, Guoshuai & Yuhua, Qian & Zhang, Yayu & Yan, Hongren & Cheng, Honghong & Hu, Zhiguo, 2022. "The recognition of kernel research team," Journal of Informetrics, Elsevier, vol. 16(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haeussler, Carolin & Sauermann, Henry, 2020. "Division of labor in collaborative knowledge production: The role of team size and interdisciplinarity," Research Policy, Elsevier, vol. 49(6).
    2. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    3. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    4. Fontana, Magda & Iori, Martina & Leone Sciabolazza, Valerio & Souza, Daniel, 2022. "The interdisciplinarity dilemma: Public versus private interests," Research Policy, Elsevier, vol. 51(7).
    5. Tracy Klarenbeek & Nelius Boshoff, 2018. "Measuring multidisciplinary health research at South African universities: a comparative analysis based on co-authorships and journal subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1461-1485, September.
    6. Kazuki Nakajima & Kazuyuki Shudo & Naoki Masuda, 2023. "Higher-order rich-club phenomenon in collaborative research grant networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2429-2446, April.
    7. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    8. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    9. Shahadat Uddin & Tasadduq Imam & Mohammad Mozumdar, 2021. "Research interdisciplinarity: STEM versus non-STEM," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 603-618, January.
    10. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Hamid Bouabid & Hind Achachi, 2022. "Size of science team at university and internal co-publications: science policy implications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6993-7013, December.
    12. Zhentao Liang & Jin Mao & Gang Li, 2023. "Bias against scientific novelty: A prepublication perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 99-114, January.
    13. Andrew S. Hanks & Kevin M. Kniffin & Xuechao Qian & Bo Wang & Bruce A. Weinberg, 2022. "First Foot Forward: A Two-Step Econometric Method for Parsing and Estimating the Impacts of Multiple Identities," NBER Working Papers 30293, National Bureau of Economic Research, Inc.
    14. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    15. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    16. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    17. Shen, Hongquan & Xie, Juan & Ao, Weiyi & Cheng, Ying, 2022. "The continuity and citation impact of scientific collaboration with different gender composition," Journal of Informetrics, Elsevier, vol. 16(1).
    18. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    19. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    20. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:2:d:10.1007_s11192-020-03513-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.