IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03531-4.html
   My bibliography  Save this article

How scientific research reacts to international public health emergencies: a global analysis of response patterns

Author

Listed:
  • Lin Zhang

    (Wuhan University
    KU Leuven)

  • Wenjing Zhao

    (Wuhan University)

  • Beibei Sun

    (Wuhan University)

  • Ying Huang

    (Wuhan University
    KU Leuven)

  • Wolfgang Glänzel

    (KU Leuven
    Library of the Hungarian Academy of Sciences)

Abstract

As of the middle of April 2020, the unprecedented COVID-19 pandemic has claimed more than 137,000 lives (https://coronavirus.jhu.edu/map.html). Because of its extremely fast spreading, the attention of the global scientific community is now focusing on slowing down, containing and finally stopping the spread of this disease. This requires the concerted action of researchers and practitioners of many related fields, raising, as always in such situations the question, of what kind of research has to be conducted, what are the priorities, how has research to be coordinated and who needs to be involved. In other words, what are the characteristics of the response of the global research community on the challenge? In the present paper, we attempt to characterise, quantify and measure the response of academia to international public health emergencies in a comparative bibliometric study of multiple outbreaks. In addition, we provide a preliminary review of the global research effort regarding the defeat of the COVID-19 pandemic. From our analysis of six infectious disease outbreaks since 2000, including COVID-19, we find that academia always responded quickly to public health emergencies with a sharp increase in the number of publications immediately following the declaration of an outbreak by the WHO. In general, countries/regions place emphasis on epidemics in their own region, but Europe and North America are also concerned with outbreaks in other, developed and less developed areas through conducting intensive collaborative research with the core countries/regions of the outbreak, such as in the case of Ebola in Africa. Researches in the fields of virology, infectious diseases and immunology are the most active, and we identified two characteristic patterns in global science distinguishing research in Europe and America that is more focused on public health from that conducted in China and Japan with more emphasis on biomedical research and clinical pharmacy, respectively. Universities contribute slightly less than half to the global research output, and the vast majority of research funding originates from the public sector. Our findings on how academia responds to emergencies could be beneficial to decision-makers in research and health policy in creating and adjusting anti-epidemic/-pandemic strategies.

Suggested Citation

  • Lin Zhang & Wenjing Zhao & Beibei Sun & Ying Huang & Wolfgang Glänzel, 2020. "How scientific research reacts to international public health emergencies: a global analysis of response patterns," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 747-773, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03531-4
    DOI: 10.1007/s11192-020-03531-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03531-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03531-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Ta Chiu & Jing-Shan Huang & Yuh-Shan Ho, 2004. "Bibliometric analysis of Severe Acute Respiratory Syndrome-related research in the beginning stage," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 69-77, September.
    2. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    3. Belén Álvarez-Bornstein & Fernanda Morillo & María Bordons, 2017. "Funding acknowledgments in the Web of Science: completeness and accuracy of collected data," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1793-1812, September.
    4. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    5. Wolfgang Glänzel & Bart Thijs & Pei-Shan Chi, 2016. "The challenges to expand bibliometric studies from periodical literature to monographic literature with a new data source: the book citation index," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2165-2179, December.
    6. Weishu Liu & Li Tang & Guangyuan Hu, 2020. "Funding information in Web of Science: an updated overview," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1509-1524, March.
    7. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    2. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    3. Yanto Chandra, 2018. "Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-24, January.
    4. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).
    5. Johannes Sorz & Wolfgang Glänzel & Ursula Ulrych & Christian Gumpenberger & Juan Gorraiz, 2020. "Research strengths identified by esteem and bibliometric indicators: a case study at the University of Vienna," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1095-1116, November.
    6. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    7. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    8. Nieminen, Paavo & Pölönen, Ilkka & Sipola, Tuomo, 2013. "Research literature clustering using diffusion maps," Journal of Informetrics, Elsevier, vol. 7(4), pages 874-886.
    9. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    10. Yuxian Liu & Ewelina Biskup & Yueqian Wang & Fengfeng Cai & Xiaoyan Zhang, 2020. "A new territory and its pioneer: opening up a dominant research stream for a translational research area," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1213-1228, November.
    11. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    12. Emilio Abad-Segura & Ana Batlles-delaFuente & Mariana-Daniela González-Zamar & Luis Jesús Belmonte-Ureña, 2021. "Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    13. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    14. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    15. Wallace, Matthew L. & Ràfols, Ismael, 2018. "Institutional shaping of research priorities: A case study on avian influenza," Research Policy, Elsevier, vol. 47(10), pages 1975-1989.
    16. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    17. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    18. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    19. Thara Prabhakaran & Hiran H. Lathabai & Susan George & Manoj Changat, 2018. "Towards prediction of paradigm shifts from scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1611-1644, December.
    20. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03531-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.