IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v123y2020i1d10.1007_s11192-020-03369-w.html
   My bibliography  Save this article

Prolificacy and visibility versus reputation in the hard sciences

Author

Listed:
  • Maziar Montazerian

    (Federal University of São Carlos (UFSCar)
    Federal University of São Carlos (UFSCar))

  • Edgar Dutra Zanotto

    (Federal University of São Carlos (UFSCar)
    Federal University of São Carlos (UFSCar))

  • Hellmut Eckert

    (Federal University of São Carlos (UFSCar)
    University of São Paulo)

Abstract

Some authors (including ourselves) have argued that the research quality of an individual or group has to be evaluated by peer review based on the originality, strength, reproducibility, and relevance of their publications. As a result, a reputation is built up by the community. In this article, we dwell on complementary indicators of a scientist performance—prolificacy and visibility—by critically analyzing a plethora of scientometric data for the hard sciences. Our investigation corroborates the notion that the H-indexes (which correlate to both prolificacy and visibility) of the most prolific and most cited researchers strongly depend on the field of study and increase with the total number of publications, N. Here we use the MZE-index (defined in a previous article) to distinguish the H-indexes of authors that stand at, above or below the average of their field for any number of publications. In addition, we propose a field normalization factor (FNF) which allows one to scale the H-indexes of any author or group belonging to different research fields. While neither the MZE nor FNF- normalized H indices can guarantee quality or reputation, they show how visible by their community a researcher, research group, or institution is. We also explore a potential correlation of prolificacy and visibility with scientific reputation by comparing the performances of the most cited scientists with those of the winners of important awards in five macro-areas of the hard sciences. This comparison reveals strongly field-dependent features, suggesting that citation-based parameters can be useful, complementary scientometric evaluators, but should not be confused with quality.

Suggested Citation

  • Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2020. "Prolificacy and visibility versus reputation in the hard sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 207-221, April.
  • Handle: RePEc:spr:scient:v:123:y:2020:i:1:d:10.1007_s11192-020-03369-w
    DOI: 10.1007/s11192-020-03369-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03369-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03369-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John P. A. Ioannidis & Richard Klavans & Kevin W. Boyack, 2018. "Thousands of scientists publish a paper every five days," Nature, Nature, vol. 561(7722), pages 167-169, September.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. John Panaretos & Chrisovaladis Malesios, 2009. "Assessing scientific research performance and impact with single indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 635-670, December.
    4. Jean-Francois Molinari & Alain Molinari, 2008. "A new methodology for ranking scientific institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 163-174, April.
    5. Juan E. Iglesias & Carlos Pecharromán, 2007. "Scaling the h-index for different scientific ISI fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 73(3), pages 303-320, December.
    6. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    7. Fred Y. Ye, 2011. "A unification of three models for the h‐index," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 205-207, January.
    8. Fred Y. Ye, 2011. "A unification of three models for the h-index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 205-207, January.
    9. Schubert, András & Glänzel, Wolfgang, 2007. "A systematic analysis of Hirsch-type indices for journals," Journal of Informetrics, Elsevier, vol. 1(3), pages 179-184.
    10. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    11. João Claro & Carlos A. V. Costa, 2011. "A made-to-measure indicator for cross-disciplinary bibliometric ranking of researchers performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 113-123, January.
    12. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2019. "A new parameter for (normalized) evaluation of H-index: countries as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1065-1078, March.
    13. Edgar Dutra Zanotto, 2006. "The scientists pyramid," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 175-181, October.
    14. Antonis Sidiropoulos & Dimitrios Katsaros & Yannis Manolopoulos, 2007. "Generalized Hirsch h-index for disclosing latent facts in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 253-280, August.
    15. John P A Ioannidis & Kevin Boyack & Paul F Wouters, 2016. "Citation Metrics: A Primer on How (Not) to Normalize," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-7, September.
    16. Liming Liang, 2006. "h-index sequence and h-index matrix: Constructions and applications," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 153-159, October.
    17. Alonso, S. & Cabrerizo, F.J. & Herrera-Viedma, E. & Herrera, F., 2009. "h-Index: A review focused in its variants, computation and standardization for different scientific fields," Journal of Informetrics, Elsevier, vol. 3(4), pages 273-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edgar D. Zanotto & Vinicius Carvalho, 2021. "Article age- and field-normalized tools to evaluate scientific impact and momentum," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2865-2883, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar D. Zanotto & Vinicius Carvalho, 2021. "Article age- and field-normalized tools to evaluate scientific impact and momentum," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2865-2883, April.
    2. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2019. "A new parameter for (normalized) evaluation of H-index: countries as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1065-1078, March.
    3. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    4. William Cabos & Juan Miguel Campanario, 2018. "Exploring the Hjif-Index, an Analogue to the H-Like Index for Journal Impact Factors," Publications, MDPI, vol. 6(2), pages 1-11, April.
    5. Petridis, Konstantinos & Malesios, Chrisovalantis & Arabatzis, Garyfallos & Thanassoulis, Emmanuel, 2013. "Efficiency analysis of forestry journals: Suggestions for improving journals’ quality," Journal of Informetrics, Elsevier, vol. 7(2), pages 505-521.
    6. Anna Tietze & Philip Hofmann, 2019. "The h-index and multi-author hm-index for individual researchers in condensed matter physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 171-185, April.
    7. Tokmachev, Andrey M., 2023. "Hidden scales in statistics of citation indicators," Journal of Informetrics, Elsevier, vol. 17(1).
    8. Wei, Shelia X. & Tong, Tong & Rousseau, Ronald & Wang, Wanru & Ye, Fred Y., 2022. "Relations among the h-, g-, ψ-, and p-index and offset-ability," Journal of Informetrics, Elsevier, vol. 16(4).
    9. John Panaretos & Chrisovaladis Malesios, 2009. "Assessing scientific research performance and impact with single indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 635-670, December.
    10. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    11. Zhenbin Yan & Qiang Wu & Xingchen Li, 2016. "Do Hirsch-type indices behave the same in assessing single publications? An empirical study of 29 bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1815-1833, December.
    12. Bornmann, Lutz & Mutz, Rüdiger & Hug, Sven E. & Daniel, Hans-Dieter, 2011. "A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants," Journal of Informetrics, Elsevier, vol. 5(3), pages 346-359.
    13. Vieira, E.S. & Gomes, J.A.N.F., 2010. "A research impact indicator for institutions," Journal of Informetrics, Elsevier, vol. 4(4), pages 581-590.
    14. Filippo Radicchi & Claudio Castellano, 2013. "Analysis of bibliometric indicators for individual scholars in a large data set," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 627-637, December.
    15. O. Mryglod & Yu. Holovatch & R. Kenna, 2022. "Big fish and small ponds: why the departmental h-index should not be used to rank universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3279-3292, June.
    16. Muhammad Raheel & Samreen Ayaz & Muhammad Tanvir Afzal, 2018. "Evaluation of h-index, its variants and extensions based on publication age & citation intensity in civil engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1107-1127, March.
    17. Lucio Bertoli-Barsotti & Tommaso Lando, 2017. "A theoretical model of the relationship between the h-index and other simple citation indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1415-1448, June.
    18. Bertoli-Barsotti, Lucio & Lando, Tommaso, 2015. "On a formula for the h-index," Journal of Informetrics, Elsevier, vol. 9(4), pages 762-776.
    19. Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
    20. Chen, Dar-zen & Huang, Mu-hsuan & Ye, Fred Y., 2013. "A probe into dynamic measures for h-core and h-tail," Journal of Informetrics, Elsevier, vol. 7(1), pages 129-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:123:y:2020:i:1:d:10.1007_s11192-020-03369-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.