IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i2d10.1007_s11192-019-03046-7.html
   My bibliography  Save this article

The Pinski–Narin influence weight and the Ramanujacharyulu power-weakness ratio indicators revisited

Author

Listed:
  • Gangan Prathap

    (A P J Abdul Kalam Technological University)

Abstract

A graph theoretic approach from social network analysis allows size-dependent and size-independent bibliometric indicators to be identified from what is called the citation matrix. In an input–output sense, the number of references becomes the size-dependent measure of the input and the number of citations received by the journal from all journals in the network becomes the size-dependent measure of the output. However, in this paper, we are interested to compare two size-independent dimensionless indicators: the Pinski–Narin influence weight (IW) and the Ramanujacharyulu power-weakness ratio (PWR). These are proxies for the quality of the journal’s performance in the network. We show that at the non-recursive level, the two indicators are identical. At this stage these are simply measures of popularity. After recursion (i.e. repeated improvement or iteration) these become network measures of prestige of the journals. PWR is computed as a ratio of terms in the weighted citations vector and weighted references vector after the power and weakness matrices are separately recursively iterated. The Pinski–Narin procedure computes a matrix of ratios first and evaluates the IW after recursive iteration of this matrix of ratios. In this sense, the two procedures differ just like the RoA (ratio of averages) and the AoR (average of ratios) ways of computing relative citation indicators. We illustrate the concepts using datasets from subgraphs of 10 statistical journals and 14 Chinese chemistry journals with network data collected from the Web of Science. We are also able to show the confounding effects when self-citations are taken into account.

Suggested Citation

  • Gangan Prathap, 2019. "The Pinski–Narin influence weight and the Ramanujacharyulu power-weakness ratio indicators revisited," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1173-1185, May.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03046-7
    DOI: 10.1007/s11192-019-03046-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03046-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03046-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gangan Prathap, 2018. "Eugene Garfield: from the metrics of science to the science of metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 637-650, February.
    2. Johan Bollen & Herbert Van de Sompel & Aric Hagberg & Ryan Chute, 2009. "A Principal Component Analysis of 39 Scientific Impact Measures," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-11, June.
    3. Erjia Yan & Ying Ding, 2010. "Weighted citation: An indicator of an article's prestige," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(8), pages 1635-1643, August.
    4. E. Garfield & I. H. Sher, 1963. "New factors in the evaluation of scientific literature through citation indexing," American Documentation, Wiley Blackwell, vol. 14(3), pages 195-201, July.
    5. Alex De Visscher, 2012. "The thermodynamics-bibliometrics consilience and the meaning of h-type indices – reply," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 630-631, March.
    6. Alex De Visscher, 2010. "An index to measure a scientist's specific impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 319-328, February.
    7. Erjia Yan & Ying Ding, 2010. "Weighted citation: An indicator of an article's prestige," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(8), pages 1635-1643, August.
    8. Larivière, Vincent & Gingras, Yves, 2011. "Averages of ratios vs. ratios of averages: An empirical analysis of four levels of aggregation," Journal of Informetrics, Elsevier, vol. 5(3), pages 392-399.
    9. Alex De Visscher, 2010. "An index to measure a scientist's specific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 319-328, February.
    10. Alex De Visscher, 2011. "What does the g-index really measure?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(11), pages 2290-2293, November.
    11. Loet Leydesdorff, 2009. "How are new citation‐based journal indicators adding to the bibliometric toolbox?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(7), pages 1327-1336, July.
    12. C. Ramanujacharyulu, 1964. "Analysis of preferential experiments," Psychometrika, Springer;The Psychometric Society, vol. 29(3), pages 257-261, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prathap, Gangan & Mukherjee, Somenath & Leydesdorff, Loet, 2020. "Within-journal self-citations and the Pinski-Narin influence weights," Journal of Informetrics, Elsevier, vol. 14(1).
    2. Ephrance Abu Ujum & Sameer Kumar & Kuru Ratnavelu & Gangan Prathap, 2021. "A new journal power-weakness ratio to measure journal impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9051-9068, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prathap, Gangan & Mukherjee, Somenath & Leydesdorff, Loet, 2020. "Within-journal self-citations and the Pinski-Narin influence weights," Journal of Informetrics, Elsevier, vol. 14(1).
    2. Walters, William H., 2017. "Do subjective journal ratings represent whole journals or typical articles? Unweighted or weighted citation impact?," Journal of Informetrics, Elsevier, vol. 11(3), pages 730-744.
    3. Gangan Prathap, 2018. "Eugene Garfield: from the metrics of science to the science of metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 637-650, February.
    4. Franceschet, Massimo, 2010. "Journal influence factors," Journal of Informetrics, Elsevier, vol. 4(3), pages 239-248.
    5. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    6. Jiaying Liu & Jiahao Tian & Xiangjie Kong & Ivan Lee & Feng Xia, 2019. "Two decades of information systems: a bibliometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 617-643, February.
    7. Bornmann, Lutz & Leydesdorff, Loet, 2013. "The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000," Journal of Informetrics, Elsevier, vol. 7(2), pages 286-291.
    8. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    9. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    10. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    11. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    12. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    13. Feiheng Luo & Aixin Sun & Mojisola Erdt & Aravind Sesagiri Raamkumar & Yin-Leng Theng, 2018. "Exploring prestigious citations sourced from top universities in bibliometrics and altmetrics: a case study in the computer science discipline," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 1-17, January.
    14. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    15. Gianfranco Ennas & Battista Biggio & Maria Chiara Di Guardo, 2015. "Data-driven journal meta-ranking in business and management," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1911-1929, December.
    16. González-Pereira, Borja & Guerrero-Bote, Vicente P. & Moya-Anegón, Félix, 2010. "A new approach to the metric of journals’ scientific prestige: The SJR indicator," Journal of Informetrics, Elsevier, vol. 4(3), pages 379-391.
    17. Michael Hall, C., 2011. "Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism," Tourism Management, Elsevier, vol. 32(1), pages 16-27.
    18. Shunshun Shi & Wenyu Zhang & Shuai Zhang & Jie Chen, 2018. "Does prestige dimension influence the interdisciplinary performance of scientific entities in knowledge flow? Evidence from the e-government field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1237-1264, November.
    19. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    20. Andersen, Jens Peter, 2017. "An empirical and theoretical critique of the Euclidean index," Journal of Informetrics, Elsevier, vol. 11(2), pages 455-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:2:d:10.1007_s11192-019-03046-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.