IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i3d10.1007_s11192-018-2806-7.html
   My bibliography  Save this article

Author-weighted impact factor and reference return ratio: can we attain more equality among fields?

Author

Listed:
  • Tolga Yuret

    (Istanbul Technical University)

Abstract

s Despite its problems, journal impact factor (JIF) is the most popular journal quality metric. In this paper, two simple adjustments of JIF are tested to see whether more equality among fields can be attained. In author-weighted impact factor (AWIF), the number of citations that a journal receive is divided by the number of authors in that journal. In reference return ratio (RRR), the number of citations that a journal receive is divided by the number of references in that journal. We compute JIF, AWIF and RRR of all 10,848 journals included in journal citation report 2012. Science journals outperform social science journals at JIF but social science journals outperform science journals at both AWIF and RRR. Highest level of equality between science and social science journals is attained when AWIF is used. These findings cannot be generalized when narrower subject categories are considered.

Suggested Citation

  • Tolga Yuret, 2018. "Author-weighted impact factor and reference return ratio: can we attain more equality among fields?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2097-2111, September.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:3:d:10.1007_s11192-018-2806-7
    DOI: 10.1007/s11192-018-2806-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2806-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2806-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Podlubny, 2005. "Comparison of scientific impact expressed by the number of citations in different fields of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(1), pages 95-99, July.
    2. Loet Leydesdorff & Tobias Opthof, 2010. "Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(11), pages 2365-2369, November.
    3. Benjamin M. Althouse & Jevin D. West & Carl T. Bergstrom & Theodore Bergstrom, 2009. "Differences in impact factor across fields and over time," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(1), pages 27-34, January.
    4. Tolga Yuret, 2015. "Interfield comparison of academic output by using department level data," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1653-1664, December.
    5. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    6. Loet Leydesdorff & Lutz Bornmann, 2011. "How fractional counting of citations affects the impact factor: Normalization in terms of differences in citation potentials among fields of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 217-229, February.
    7. Ana M. Ramírez & Esther O. García & J. Antonio Del Río, 2000. "Renormalized Impact Factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(1), pages 3-9, January.
    8. Anne-Wil Harzing & Satu Alakangas & David Adams, 2014. "hIa: an individual annual h-index to accommodate disciplinary and career length differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 811-821, June.
    9. Radicchi, Filippo & Castellano, Claudio, 2012. "Testing the fairness of citation indicators for comparison across scientific domains: The case of fractional citation counts," Journal of Informetrics, Elsevier, vol. 6(1), pages 121-130.
    10. David W. Johnston & Marco Piatti & Benno Torgler, 2013. "Citation success over time: theory or empirics?," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1023-1029, June.
    11. Werner Marx & Lutz Bornmann, 2015. "On the causes of subject-specific citation rates in Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1823-1827, February.
    12. Abramo, Giovanni & D’Angelo, Ciriaco Andrea, 2015. "The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy," Journal of Informetrics, Elsevier, vol. 9(4), pages 746-761.
    13. Fiorenzo Franceschini & Maurizio Galetto & Domenico Maisano & Luca Mastrogiacomo, 2012. "The success-index: an alternative approach to the h-index for evaluating an individual’s research output," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 621-641, September.
    14. Loet Leydesdorff & Jung C. Shin, 2011. "How to evaluate universities in terms of their relative citation impacts: Fractional counting of citations and the normalization of differences among disciplines," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(6), pages 1146-1155, June.
    15. Michel Zitt & Henry Small, 2008. "Modifying the journal impact factor by fractional citation weighting: The audience factor," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(11), pages 1856-1860, September.
    16. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    17. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    18. Nicolaisen, Jeppe & Frandsen, Tove Faber, 2008. "The Reference Return Ratio," Journal of Informetrics, Elsevier, vol. 2(2), pages 128-135.
    19. Zhihui Zhang & Ying Cheng & Nian Cai Liu, 2014. "Comparison of the effect of mean-based method and z-score for field normalization of citations at the level of Web of Science subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1679-1693, December.
    20. Michel Zitt & Suzy Ramanana-Rahary & Elise Bassecoulard, 2005. "Relativity of citation performance and excellence measures: From cross-field to cross-scale effects of field-normalisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(2), pages 373-401, April.
    21. Narongrit Sombatsompop & Teerasak Markpin, 2005. "Making an equality of ISI impact factors for different subject fields," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(7), pages 676-683, May.
    22. Péter Vinkler, 2009. "Introducing the Current Contribution Index for characterizing the recent, relevant impact of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(2), pages 409-420, May.
    23. Éric Archambault & Vincent Larivière, 2009. "History of the journal impact factor: Contingencies and consequences," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 635-649, June.
    24. Kosmulski, Marek, 2011. "Successful papers: A new idea in evaluation of scientific output," Journal of Informetrics, Elsevier, vol. 5(3), pages 481-485.
    25. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    26. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    27. Lundberg, Jonas, 2007. "Lifting the crown—citation z-score," Journal of Informetrics, Elsevier, vol. 1(2), pages 145-154.
    28. Tolga Yuret, 2014. "Why do economists publish less?," Applied Economics Letters, Taylor & Francis Journals, vol. 21(11), pages 760-762, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyang Wang & Shijia Jiao & Kah-Hin Chai & Guangsheng Chen, 2019. "Building journal’s long-term impact: using indicators detected from the sustained active articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 261-283, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Bornmann, Lutz & Haunschild, Robin, 2016. "Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator," Journal of Informetrics, Elsevier, vol. 10(3), pages 875-887.
    3. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    4. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    5. Bouyssou, Denis & Marchant, Thierry, 2016. "Ranking authors using fractional counting of citations: An axiomatic approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 183-199.
    6. Waltman, Ludo & van Eck, Nees Jan, 2013. "A systematic empirical comparison of different approaches for normalizing citation impact indicators," Journal of Informetrics, Elsevier, vol. 7(4), pages 833-849.
    7. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    8. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    9. Loet Leydesdorff, 2012. "Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 355-365, August.
    10. Loet Leydesdorff & Ping Zhou & Lutz Bornmann, 2013. "How can journal impact factors be normalized across fields of science? An assessment in terms of percentile ranks and fractional counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(1), pages 96-107, January.
    11. P. Dorta-González & M. I. Dorta-González, 2013. "Comparing journals from different fields of science and social science through a JCR subject categories normalized impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 645-672, May.
    12. Bornmann, Lutz & Marx, Werner, 2015. "Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 408-418.
    13. Loet Leydesdorff, 2013. "An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 35-55, January.
    14. Franceschini, Fiorenzo & Maisano, Domenico, 2014. "Sub-field normalization of the IEEE scientific journals based on their connection with Technical Societies," Journal of Informetrics, Elsevier, vol. 8(3), pages 508-533.
    15. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    16. Ludo Waltman & Erjia Yan & Nees Jan Eck, 2011. "A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 301-314, October.
    17. M. Zitt, 2011. "Behind citing-side normalization of citations: some properties of the journal impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 329-344, October.
    18. Dorta-González, Pablo & Dorta-González, María Isabel & Santos-Peñate, Dolores Rosa & Suárez-Vega, Rafael, 2014. "Journal topic citation potential and between-field comparisons: The topic normalized impact factor," Journal of Informetrics, Elsevier, vol. 8(2), pages 406-418.
    19. Ahlgren, Per & Waltman, Ludo, 2014. "The correlation between citation-based and expert-based assessments of publication channels: SNIP and SJR vs. Norwegian quality assessments," Journal of Informetrics, Elsevier, vol. 8(4), pages 985-996.
    20. Bornmann, Lutz & Haunschild, Robin, 2016. "Normalization of Mendeley reader impact on the reader- and paper-side: A comparison of the mean discipline normalized reader score (MDNRS) with the mean normalized reader score (MNRS) and bare reader ," Journal of Informetrics, Elsevier, vol. 10(3), pages 776-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:3:d:10.1007_s11192-018-2806-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.