IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v114y2018i3d10.1007_s11192-017-2604-7.html
   My bibliography  Save this article

Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations

Author

Listed:
  • Kai Hu

    (Wuhan University
    Wuhan University)

  • Kunlun Qi

    (China University of Geosciences (Wuhan))

  • Siluo Yang

    (Wuhan University)

  • Shengyu Shen

    (Yangtze River Scientific Research Institute)

  • Xiaoqiang Cheng

    (Hubei University)

  • Huayi Wu

    (Wuhan University
    Wuhan University)

  • Jie Zheng

    (Wuhan University
    Wuhan University)

  • Stephen McClure

    (Wuhan University
    Wuhan University)

  • Tianxing Yu

    (Wuhan University
    Wuhan University)

Abstract

As an increasing number of scientific literature dataset are open access, more attention has gravitated to keyword analysis in many scientific fields. Traditional keyword analyses include the frequency based and the network based methods, both providing efficient mining techniques for identifying the representative keywords. The semantic meanings behind the keywords are important for understanding the research content. However, traditional keyword analysis methods pay scant attention to semantic meanings; the network based or frequency based methods as traditionally used, present limited semantic associations among the keywords. Moreover, the ways in which the semantic meanings behind the keywords are associated to the citations are not clear. Thus, we use the Google Word2Vec model to build word vectors and reduce them to a two-dimensional plane in a Voronoi diagram using the t-SNE algorithm, to link meanings with citations. The distance between semantic meanings of keywords in two-dimensional plane are similar to distances in geographical space, thus we introduce a geographic metaphor, “Ghost City” to describe the relationship between semantics and citations for hot topics that have recently become not so hot. Along with “Ghost City” zones, “Always Hot”, “Newly Emerging Hot”, and “Always Silent” areas are classified and mapped, describing the spatial heterogeneity and homogeneity of the semantic distribution of keywords cited in a domain database. Using a collection of “geographical natural hazard” literature datasets, we demonstrate that the proposed method and classification scheme can efficiently provide a unique viewpoint for interpreting the interaction between semantics and the citations, as “Ghost City”, “Always Hot”, “Newly Emerging Hot”, and “Always Silent” areas.

Suggested Citation

  • Kai Hu & Kunlun Qi & Siluo Yang & Shengyu Shen & Xiaoqiang Cheng & Huayi Wu & Jie Zheng & Stephen McClure & Tianxing Yu, 2018. "Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1141-1157, March.
  • Handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2604-7
    DOI: 10.1007/s11192-017-2604-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2604-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2604-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Ping Xie, 2015. "Study of international anticancer research trends via co-word and document co-citation visualization analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 611-622, October.
    3. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    4. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    5. Garfield, Eugene, 2009. "From the science of science to Scientometrics visualizing the history of science with HistCite software," Journal of Informetrics, Elsevier, vol. 3(3), pages 173-179.
    6. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    7. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    8. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    9. Jie Zheng & Jianya Gong & Rui Li & Kai Hu & Huayi Wu & Siluo Yang, 2017. "Community evolution analysis based on co-author network: a case study of academic communities of the journal of “Annals of the Association of American Geographers”," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 845-865, November.
    10. van Eck, N.J.P. & Waltman, L., 2009. "VOSviewer: A Computer Program for Bibliometric Mapping," ERIM Report Series Research in Management ERS-2009-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.
    2. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    3. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    4. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    5. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    6. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    7. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    8. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    9. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    10. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    11. Toshiyuki Hasumi & Mei-Shiu Chiu, 2022. "Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4631-4654, August.
    12. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    13. Jörn Block & Christian Fisch & Farooq Rehan, 2020. "Religion and entrepreneurship: a map of the field and a bibliometric analysis," Management Review Quarterly, Springer, vol. 70(4), pages 591-627, November.
    14. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    15. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    16. Yawen Zou & Manfred D Laubichler, 2018. "From systems to biology: A computational analysis of the research articles on systems biology from 1992 to 2013," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    17. Xin Li & Qiang Yao & Xuli Tang & Qian Li & Mengjia Wu, 2020. "How to investigate the historical roots and evolution of research fields in China? A case study on iMetrics using RootCite," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1253-1274, November.
    18. Ci-Jyun Liang & Marvin H. Cheng, 2023. "Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review," IJERPH, MDPI, vol. 20(10), pages 1-21, May.
    19. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    20. Marco Galvagno & Vincenzo Pisano, 2021. "Building the genealogy of family business internationalization: a bibliometric mixed-method approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 757-783, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2604-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.