IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v102y2015i2d10.1007_s11192-014-1470-9.html
   My bibliography  Save this article

Evaluating and comparing the university performance in knowledge utilization for patented inventions

Author

Listed:
  • Wen-Chi Hung

    (National Chiao Tung University
    National Applied Research Laboratories)

  • Cherng G. Ding

    (National Chiao Tung University)

  • Hung-Jui Wang

    (Chih-Lee Institute of Technology)

  • Meng-Che Lee

    (National Chiao Tung University)

  • Chieh-Peng Lin

    (National Chiao Tung University)

Abstract

Although universities have played an important role in knowledge creation, it is also of concern to see how universities perform in knowledge utilization. In the present article, an effective approach is proposed to evaluate and compare university performance in knowledge utilization for patented inventions. Growth trajectories of the cumulative patent citations to scientific publications produced by individual universities are analyzed by using latent growth modeling. Moreover, we examine how the utilization of scientific knowledge created in 1995 and 2005 is affected by research impact and university–industry collaboration among the universities in Europe, North America, and East Asia. The results indicate that not all top 300 research universities in the world perform well in knowledge utilization for patented inventions. Some policy implications are discussed.

Suggested Citation

  • Wen-Chi Hung & Cherng G. Ding & Hung-Jui Wang & Meng-Che Lee & Chieh-Peng Lin, 2015. "Evaluating and comparing the university performance in knowledge utilization for patented inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1269-1286, February.
  • Handle: RePEc:spr:scient:v:102:y:2015:i:2:d:10.1007_s11192-014-1470-9
    DOI: 10.1007/s11192-014-1470-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1470-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1470-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    2. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    3. Dag W. Aksnes, 2006. "Citation rates and perceptions of scientific contribution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(2), pages 169-185, January.
    4. Joseph S. B. Mitchell & Jan Karel Lenstra, 1992. "Guest Editors' Introduction," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 357-359, November.
    5. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    6. Mark A. Lemley & Bhaven Sampat, 2012. "Examiner Characteristics and Patent Office Outcomes," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 817-827, August.
    7. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    8. Tijssen, Robert J. W., 2001. "Global and domestic utilization of industrial relevant science: patent citation analysis of science-technology interactions and knowledge flows," Research Policy, Elsevier, vol. 30(1), pages 35-54, January.
    9. Mu-Hsuan Huang & Han-Wen Chang & Dar-Zen Chen, 2006. "Research evaluation of research-oriented universities in Taiwan from 1993 to 2003," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 419-435, June.
    10. Martin Meyer, 2006. "Measuring science-technology interaction in the knowledge-driven economy: The case of a small economy," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 425-439, February.
    11. Hicks, Diana & Breitzman, Tony & Olivastro, Dominic & Hamilton, Kimberly, 2001. "The changing composition of innovative activity in the US -- a portrait based on patent analysis," Research Policy, Elsevier, vol. 30(4), pages 681-703, April.
    12. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    13. Clara Calero & Thed N. Leeuwen & Robert J. W. Tijssen, 2007. "Research cooperation within the bio-pharmaceutical industry: Network analyses of co-publications within and between firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(1), pages 87-99, April.
    14. F. King Alexander, 2000. "The Changing Face of Accountability," The Journal of Higher Education, Taylor & Francis Journals, vol. 71(4), pages 411-431, July.
    15. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    16. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    17. Diana Hicks & Anthony Breitzman & Kimberly Hamilton & Francis Narin, 2000. "Research excellence and patented innovation," Science and Public Policy, Oxford University Press, vol. 27(5), pages 310-320, October.
    18. R. J. W. Tussen & R. K. Buter & Th. N. van Leeuwen, 2000. "Technological Relevance of Science: An Assessment of Citation Linkages between Patents and Research Papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 389-412, February.
    19. Blomkvist, Katarina & Kappen, Philip & Zander, Ivo, 2014. "Superstar inventors—Towards a people-centric perspective on the geography of technological renewal in the multinational corporation," Research Policy, Elsevier, vol. 43(4), pages 669-682.
    20. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Cherng G. & Hung, Wen-Chi & Lee, Meng-Che & Wang, Hung-Jui, 2017. "Exploring paper characteristics that facilitate the knowledge flow from science to technology," Journal of Informetrics, Elsevier, vol. 11(1), pages 244-256.
    2. Zhao Qu & Shanshan Zhang & Chunbo Zhang, 2017. "Patent research in the field of library and information science: Less useful or difficult to explore?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 205-217, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    2. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    3. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    5. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    6. Staffan Jacobsson, 2002. "Universities and industrial transformation: An interpretative and selective literature study with special emphasis on Sweden," SPRU Working Paper Series 81, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Ding, Cherng G. & Hung, Wen-Chi & Lee, Meng-Che & Wang, Hung-Jui, 2017. "Exploring paper characteristics that facilitate the knowledge flow from science to technology," Journal of Informetrics, Elsevier, vol. 11(1), pages 244-256.
    8. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    9. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).
    10. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    11. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    12. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    13. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    14. Sung, Hui-Yun & Wang, Chun-Chieh & Huang, Mu-Hsuan & Chen, Dar-Zen, 2015. "Measuring science-based science linkage and non-science-based linkage of patents through non-patent references," Journal of Informetrics, Elsevier, vol. 9(3), pages 488-498.
    15. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    16. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    17. Ali Gazni & Zahra Ghaseminik, 2019. "The increasing dominance of science in the economy: Which nations are successful?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1411-1426, September.
    18. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    19. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
    20. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:102:y:2015:i:2:d:10.1007_s11192-014-1470-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.